2 research outputs found

    Long-lived emission from Eu3+:PbF2 nanocrystals distributed into sol-gel silica glass

    Get PDF
    This paper reports an optical investigation of Eu3+:PbF2 nanocrystals distributed into silica glasses fabricated by sol–gel methods. The sample microstructure was investigated using scanning transmission electron microscopy. The β-cubic PbF2 crystalline phase was identified using X-ray diffraction analysis. The observed emission bands correspond to 5D0 → 7FJ (J = 0–4) transitions of Eu3+. The spectroscopic parameters for Eu3+ ions were determined based on excitation and emission measurements as well as luminescence decay analysis. Emission originating from 5D0 state of Eu3+ ions in sample containing PbF2 nanocrystals is long-lived in comparison to precursor sol–gel silica glasses

    Structure and luminescence properties of transparent germanate glassceramics co-doped with Ni2+/Er3+ for near-infrared optical fiber application

    Get PDF
    An investigation of the structural and luminescent properties of the transparent germanate glass-ceramics co-doped with Ni2+/Er3+ for near-infrared optical fiber applications was presented. Modification of germanate glasses with 10–20 ZnO (mol.%) was focused to propose the additional heat treatment process controlled at 650 C to obtain transparent glass-ceramics. The formation of 11 nm ZnGa2O4 nanocrystals was confirmed by the X-ray diffraction (XRD) method. It followed the glass network changes analyzed in detail (MIR—Mid Infrared spectroscopy) with an increasing heating time of precursor glass. The broadband 1000–1650 nm luminescence ( exc = 808 nm) was obtained as a result of Ni2+: 3T2(3F) ! 3A2(3F) octahedral Ni2+ ions and Er3+: 4I13/2 ! 4I15/2 radiative transitions and energy transfer from Ni2+ to Er3+ with the efficiency of 19%. Elaborated glass–nanocrystalline material is a very promising candidate for use as a core of broadband luminescence optical fibers
    corecore