42 research outputs found

    Local Structural Determination in Strained-Layer Semiconductors

    Get PDF
    The theory of elasticity accurately describes the deformations of macroscopic bodies under the action of applied stress. In this lecture I will examine the internal mechanisms of elasticity for strained-layer semiconductor heterostructures. In particular, I will present extended x-ray absorption fine structure (EXAFS) and x-ray diffraction (XRD) measurements to show how bond lengths and bond angles change with strain and compare with various theoretical models. These synchrotron-based experimental techniques and their application to thin films will be developed in detail

    A combined hard x-ray photoelectron spectroscopy and electrical characterisation study of metal/SiO2/Si(100) metal-oxide-semiconductor structures

    Get PDF
    Combined hard x-ray photoelectron spectroscopy (HAXPES) and electrical characterisation measurements on identical Si based metal-oxide-semiconductor structures have been performed. The results obtained indicate that surface potential changes at the Si/SiO2 interface due to the presence of a thin Al or Ni gate layer can be detected with HAXPES. Changes in the Si/SiO2 band bending at zero gate voltage and the flat band voltage for the case of Al and Ni gate layers derived from the silicon core levels shifts observed in the HAXPES spectra are in agreement with values derived from capacitance-voltage measurements. (C) 2012 American Institute of Physics. (http://dx.doi.org/10.1063/1.4770380

    X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2

    Get PDF
    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically \u3c 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions

    Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery

    Get PDF
    Tin (Sn) nanoparticle electrodes have been prepared and battery cycling performance has been investigated with 1.2 M LiPF6 in ethylene carbonate (EC) / diethyl carbonate (DEC) electrolyte (1:1, w/w) with and without added vinylene carbonate (VC) or fluoroethylene carbonate (FEC). Incorporation of either VC or FEC improves the capacity retention of Sn nanoparticle electrodes although incorporation of VC also results in a significant increase in cell impedance. The best electrochemical performance was observed with electrolyte containing 10% of added FEC. In order to develop a better understanding of the role of the electrolyte in capacity retention and solid electrolyte interface (SEI) structure, ex-situ surface analysis has been performed on cycled electrodes with infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Hard XPS (HAXPES). The ex-situ analysis reveals a correlation between electrochemical performance, electrolyte composition, and SEI structure

    A combined capacitance-voltage and hard x-ray photoelectron spectroscopy characterisation of metal/Al2O3/In0.53Ga0.47As capacitor structures

    Get PDF
    Capacitance-Voltage (C-V) characterization and hard x-ray photoelectron spectroscopy (HAXPES) measurements have been used to study metal/Al2O3/In0.53Ga0.47As capacitor structures with high (Ni) and low (Al) work function metals. The HAXPES measurements observe a band bending occurring prior to metal deposition, which is attributed to a combination of fixed oxide charges and interface states of donor-type. Following metal deposition, the Fermi level positions at the Al2O3/In0.53Ga0.47As interface move towards the expected direction as observed from HAXPES measurements. The In0.53Ga0.47As surface Fermi level positions determined from both the C-V analysis at zero gate bias and HAXPES measurements are in reasonable agreement. The results are consistent with the presence of electrically active interface states at the Al2O3/In0.53Ga0.47As interface and suggest an interface state density increasing towards the In0.53Ga0.47As valence band edge. (C) 2014 AIP Publishing LLC

    Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries

    Get PDF
    Binder free (BF) graphite electrodes were utilized to investigate the effect of electrolyte additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) on the structure of the solid electrolyte interface (SEI). The structure of the SEI has been investigated via ex-situ surface analysis including X-ray Photoelectron spectroscopy (XPS), Hard XPS (HAXPES), Infrared spectroscopy (IR) and transmission electron microscopy (TEM). The components of the SEI have been further investigated via nuclear magnetic resonance (NMR) spectroscopy of D2O extractions. The SEI generated on the BF-graphite anode with a standard electrolyte (1.2 M LiPF6 in ethylene carbonate (EC) / ethyl methyl carbonate (EMC), 3/7 (v/v)) is composed primarily of lithium alkyl carbonates (LAC) and LiF. Incorporation of VC (3% wt) results in the generation of a thinner SEI composed of Li2CO3, poly(VC), LAC, and LiF. Incorporation of VC inhibits the generation of LAC and LiF. Incorporation of FEC (3% wt) also results in the generation of a thinner SEI composed of Li2CO3, poly(FEC), LAC, and LiF. The concentration of poly(FEC) is lower than the concentration of poly(VC) and the generation of LAC is inhibited in the presence of FEC. The SEI appears to be a homogeneous film for all electrolytes investigated
    corecore