361 research outputs found

    Hyperhidrosis: a central nervous dysfunction of sweat secretion

    Get PDF
    Hyperhidrosis (HH) is a central nervous dysfunction characterized by abnormally increased sweating due to a central dysregulation of sweat secretion. HH significantly affects the quality of life of patients in their private, social and professional environments. Physiologically, sweating is a mechanism that regulates body temperature, but it may also be triggered by emotional or gustatory stimuli. There are two main types of sweat glands: eccrine and apocrine glands. The central nervous system controls sweat secretion through the release of neurotransmitters into the autonomous nervous system (ANS) that activate the sweat glands. The hypothalamus has two separate neuronal pathways, one for thermoregulation and one for emotions. HH may thus be due to either a neuronal dysfunction of ANS regulation leading to a hyperactivity of the sympathetic nervous system, or to abnormal central processing of emotions. Crucially, there is no dysfunction of the sweat glands themselves. Various pathogenic mechanisms have been proposed to be involved in pathological sweat secretion in HH, ranging from structural changes within the ANS to increased expression of aquaporin 5 and upregulation of activin A receptor type 1 in eccrine sweat glands. Although a genetic predisposition has been demonstrated, it remains unclear exactly which genes are involved. To identify new, potential therapeutic targets and to improve treatment options, a good understanding of the signaling pathways involved, the underlying mechanisms, and the genetic components is essential. In this review we discuss the various aspects of sweat physiology and function that are necessary to explain pathological sweating. Our aim is to raise awareness of the complexity of HH to promote a better understanding of the disorder

    Psychiatric, neuropediatric, and neuropsychological symptoms in a case of hypomelanosis of Ito

    Get PDF
    This case report presents a thirteen year-old boy who was diagnosed as having Hypomelanosis of Ito. The developmental history includes severe failure to thrive, and moderate atypical autism as well as diverse clinical and neuropsychological symptoms are present. The pattern of neuropsychological functioning, which can be partially related to the neurophysiological findings, is discussed within the context of existing neuropsychological theories about autistic disorder

    Precursors of Cytochrome Oxidase in Cytochrome-Oxidase-Deficient Cells of Neurospora crassa

    Get PDF
    Three different cell types of Neurospora crassa deficient in cytochrome oxidase were studied: the nuclear mutant cni-1, the cytoplasmic mutant mi-1 and copper-depleted wild-type cells. * 1. The enzyme-deficient cells have retained a functioning mitochondrial protein synthesis. It accounted for 12–16% of the total protein synthesis of the cell. However, the analysis of mitochondrial translation products by gel electrophoresis revealed that different amounts of individual membrane proteins were synthesized. Especially mutant cni-1 produced large amounts of a small molecular weight translation product, which is barely detectable in wild-type. * 2. Mitochondrial preparations of cytochrome-oxidase-deficient cells were examined for precursors of cytochrome oxidase. The presence of polypeptide components of cytochrome oxidase in the mitochondria was established with specific antibodies. On the other hand, no significant amounts of heme a could be extracted. * 3. Radioactively labelled components of cytochrome oxidase were isolated by immunoprecipitation and analysed by gel electrophoresis. All three cell types contained the enzyme components 4–7, which are translated on cytoplasmic ribosomes. The mitochondrially synthesized components 1–3 were present in mi-1 mutant and in copper-depleted wild-type cells. In contrast, components 2 and 3 were not detectable in the nuclear mutant cni-1. Both relative and absolute amounts of these polypeptides in the enzyme-deficient cells were quite different from those in wild-type cells. * 4. The components of cytochrome oxidase found in the enzyme-deficient cells were tightly associated with the mitochondrial membranes. * 5. Processes, which affect and may control the production of enzyme precursors or their assembly to a functional cytochrome oxidase are discussed

    A social role for churches and cultural demarcation:how German MEPs represent religion in the European Parliament

    Get PDF
    This study deals with the question of how German members of the European Parliament (MEPs) represent the German model of religion–state relations at the European level. Based on a survey and interviews with German MEPs as well as a content-analysis of German MEPs’ speeches, motions and parliamentary questions during the seventh term of the European Parliament (EP), our study demonstrates that this model is represented in three dimensions. First, German MEPs reflect the close cooperation between the churches and the state in Germany, primarily on social issues, through largely church- and religion-friendly attitudes and relatively frequent contacts with religious interest-groups. Second, by referring to religious freedoms and minorities primarily outside the EU and by placing Islam in considerably more critical contexts than Christianity, German MEPs create a cultural demarcation line between Islam and Christianity through their parliamentary activities, which is similar to, though less politicised than, cultural boundaries often produced in public debates in Germany. Third, our study illustrates similar patterns of religious affiliation and subjective religiosity among German parliamentarians in both the EP and the national Parliament, which to some degree also reflect societal trends in Germany. Yet our data also suggest that European political elites are more religious than the average German population. If the presence of religion in terms of religious interest-groups and arguments is included, the EP appears to be more secularist than the German Parliament

    Awareness of health risks related to body art practices among youth in Naples, Italy: a descriptive convenience sample study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body art practices have emerged as common activities among youth, yet few studies have investigated awareness in different age groups of possible health complications associated with piercing and tattooing.</p> <p>Methods</p> <p>We investigated perceptions of and knowledge about health risks. To highlight differences among age groups, we gathered data from students at high schools and universities in the province of Naples.</p> <p>Results</p> <p>Of 9,322 adolescents, 31.3% were pierced and 11.3% were tattooed. Of 3,610 undergraduates, 33% were pierced and 24.5% were tattooed (p < 0.05). A higher number of females were pierced in both samples, but there were no gender differences among tattooed students. Among high school students, 79.4% knew about infectious risks and 46% about non-infectious risks; the respective numbers among university students were 87.2% and 59.1%. Only 3.5% of students in high school and 15% of university undergraduates acknowledged the risk of viral disease transmission; 2% and 3% knew about allergic risks. Among adolescents and young adults, 6.9% and 15.3%, respectively, provided signed informed consent; the former were less knowledgeable about health risks (24.7% vs. 57.1%) (p < 0.05). Seventy-three percent of the high school students and 33.5% of the university students had body art done at unauthorized facilities. Approximately 7% of both samples reported complications from their purchased body art.</p> <p>Conclusions</p> <p>Results indicate a need for adequate information on health risks associated with body art among students in Naples, mainly among high school students. Therefore, adolescents should be targeted for public health education programs.</p

    A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense

    Get PDF
    Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community

    Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    Get PDF
    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.
    • …
    corecore