40 research outputs found

    Integrated Pest Management (IPM) Components for Control of Armored Bush Cricket on Pearl Millet and Sorghum in Farmers' Fields in Namibia and Zambia

    Get PDF
    Armored bush crickets (Acanthoplus spp.) are sporadic pests on cereals in southern Africa. The performance of different IPM components on pearl millet [Pennisetum glaucum] in Namibia and sorghum in Namibia and Zambia is reported, based on on-farm participatory trials

    Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects

    Get PDF
    Study Objectives: To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship to cognition and sleep characteristics in a group of cognitively normal elderly individuals. Methods: Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for potential sociodemographic and sleep confounders. Results: Levels of orexin-A, amyloid beta 42 (Aβ42), phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aβ42, P-Tau, and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not influenced by other clinical or sleep characteristics that were available. Conclusions: Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging. Clinical Trial Registration: Clinicaltrials.gov registration number NCT01962779. Significance Orexin is a key regulator of sleep-wake homeostasis. Deposition of abnormal phosphorylated tau (P-Tau) in neurons and glia is one of the major features of Alzheimer's disease (AD). Our results show a positive association between cerebrospinal fluid (CSF) levels of orexin-A and P-Tau in a group of cognitively normal elderly. Further, this correlation was not influenced by total sleep time, number of awakenings or sleep disordered breathing. Both findings could be explained by the decrease in the proportion of deeper restorative sleep stages that is part of normal aging or, alternatively, by AD pathology causing orexin dysfunction early in the disease process. Understanding the role of orexin dysfunction in older adults might help unfold new preventive therapies for AD

    Reduced Slow-Wave Sleep Is Associated with High Cerebrospinal Fluid A beta 42 Levels in Cognitively Normal Elderly

    Get PDF
    Study Objectives: Emerging evidence suggests a role for sleep in contributing to the progression of Alzheimer disease (AD). Slow wave sleep (SWS) is the stage during which synaptic activity is minimal and clearance of neuronal metabolites is high, making it an ideal state to regulate levels of amyloid beta (Aβ). We thus aimed to examine relationships between concentrations of Aβ42 in the cerebrospinal fluid (CSF) and measures of SWS in cognitively normal elderly subjects. Methods: Thirty-six subjects underwent a clinical and cognitive assessment, a structural MRI, a morning to early afternoon lumbar puncture, and nocturnal polysomnography. Correlations and linear regression analyses were used to assess for associations between CSF Aβ42 levels and measures of SWS controlling for potential confounders. Resulting models were compared to each other using ordinary least squared linear regression analysis. Additionally, the participant sample was dichotomized into “high” and “low” Aβ42 groups to compare SWS bout length using survival analyses. Results: A significant inverse correlation was found between CSF Aβ42 levels, SWS duration and other SWS characteristics. Collectively, total SWA in the frontal lead was the best predictor of reduced CSF Aβ42 levels when controlling for age and ApoE status. Total sleep time, time spent in NREM1, NREM2, or REM sleep were not correlated with CSF Aβ42. Conclusions: In cognitively normal elderly, reduced and fragmented SWS is associated with increases in CSF Aβ42, suggesting that disturbed sleep might drive an increase in soluble brain Aβ levels prior to amyloid deposition

    Enolase represents a metabolic checkpoint controlling the differential exhaustion programmes of hepatitis virus-specific CD8 + T cells

    Get PDF
    Objective: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. Design: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. Results: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. Conclusion: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies

    Obstructive Sleep Apnea Severity Affects Amyloid Burden in Cognitively Normal Elderly. A Longitudinal Study

    Get PDF
    Rationale: Recent evidence suggests that obstructive sleep apnea (OSA) may be a risk factor for developing mild cognitive impairment and Alzheimer’s disease. However, how sleep apnea affects longitudinal risk for Alzheimer’s disease is less well understood. Objectives: To test the hypothesis that there is an association between severity of OSA and longitudinal increase in amyloid burden in cognitively normal elderly. Methods: Data were derived from a 2-year prospective longitudinal study that sampled community-dwelling healthy cognitively normal elderly. Subjects were healthy volunteers between the ages of 55 and 90, were nondepressed, and had a consensus clinical diagnosis of cognitively normal. Cerebrospinal fluid amyloid β was measured using ELISA. Subjects received Pittsburgh compound B positron emission tomography scans following standardized procedures. Monitoring of OSA was completed using a home sleep recording device. Measurements and Main Results: We found that severity of OSA indices (AHIall [F1,88 = 4.26; P < 0.05] and AHI4% [F1,87 = 4.36; P < 0.05]) were associated with annual rate of change of cerebrospinal fluid amyloid β42 using linear regression after adjusting for age, sex, body mass index, and apolipoprotein E4 status. AHIall and AHI4% were not associated with increases in ADPiB-mask (Alzheimer’s disease vulnerable regions of interest Pittsburg compound B positron emission tomography mask) most likely because of the small sample size, although there was a trend for AHIall (F1,28 = 2.96, P = 0.09; and F1,28 = 2.32, not significant, respectively). Conclusions: In a sample of cognitively normal elderly, OSA was associated with markers of increased amyloid burden over the 2-year follow-up. Sleep fragmentation and/or intermittent hypoxia from OSA are likely candidate mechanisms. If confirmed, clinical interventions for OSA may be useful in preventing amyloid build-up in cognitively normal elderly

    Mutations in MEF2C from the 5q14.3q15 Microdeletion Syndrome Region Are a Frequent Cause of Severe Mental Retardation and Diminish MECP2 and CDKL5 Expression

    No full text
    The etiology of mental retardation remains elusive in the majority of cases. Microdeletions within chromosomal bands 5q14.3q15 were recently identified as a recurrent cause of severe mental retardation, epilepsy, muscular hypotonia, and variable minor anomalies. By molecular karyotyping we identified two novel 2.4- and 1.5-Mb microdeletions of this region in patients with a similar phenotype. Both deletions contained the MEF2C gene, which is located proximally to the previously defined smallest region of overlap. Nevertheless, due to its known role in neurogenesis, we considered MEF2C as a phenocritical candidate gene for the 5q14.3q15 microdeletion phenotype. We therefore performed mutational analysis in 362 patients with severe mental retardation and found two truncating and two missense de novo mutations in MEF2C, establishing defects in this transcription factor as a novel relatively frequent autosomal dominant cause of severe mental retardation accounting for as much as 1.1% of patients. In these patients we found diminished MECP2 and CDKL5 expression in vivo, and transcriptional reporter assays indicated that MEF2C mutations diminish synergistic transactivation of E-box promoters including that of MECP2 and CDKL5. We therefore conclude that the phenotypic overlap of patients with MEF2C mutations and atypical Rett syndrome is due to the involvement of a common pathway. Hum Mutat 31:722-733, 2010. (C) 2010 Wiley-Liss, Inc.Genetics of disease, diagnosis and treatmen

    MHC Class I-Restricted TCR-Transgenic CD4+ T Cells Against STEAP1 Mediate Local Tumor Control of Ewing Sarcoma In Vivo

    No full text
    In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2&minus;/&minus;&gamma;c&minus;/&minus; mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5&ndash;6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS

    Microdeletions Including FMR1 in Three Female Patients with Intellectual Disability – Further Delineation of the Phenotype and Expression Studies

    No full text
    Fragile X syndrome (FXS) is one of the most common causes of intellectual disability/developmental delay (ID/DD), especially in males. It is caused most often by CGG trinucleotide repeat expansions, and less frequently by point mutations and partial or full deletions of the FMR1 gene. The wide clinical spectrum of affected females partly depends on their X-inactivation status. Only few female ID/DD patients with microdeletions including FMR1 have been reported. We describe 3 female patients with 3.5-, 4.2- and 9.2-Mb de novo microdeletions in Xq27.3-q28 containing FMR1. X-inactivation was random in all patients, yet they presented with ID/DD as well as speech delay, macrocephaly and other features attributable to FXS. No signs of autism were present. Here, we further delineate the clinical spectrum of female patients with microdeletions. FMR1 expression studies gave no evidence for an absolute threshold below which signs of FXS present. Since FMR1 expression is known to be highly variable between unrelated females, and since FMR1 mRNA levels have been suggested to be more similar among family members, we further explored the possibility of an intrafamilial effect. Interestingly, FMR1 mRNA levels in all 3 patients were significantly lower than in their respective mothers, which was shown to be specific for patients with microdeletions containing FMR1
    corecore