138 research outputs found

    Floral evidence for high summer temperatures in southern Scandinavia during 15-11 cal ka BP

    Get PDF
    The global climate transition from the Lateglacial to the Early Holocene is dominated by a rapid warming trend driven by an increase in orbital summer insolation over high northern latitudes and related feedbacks. The warming trend was interrupted by several abrupt shifts between colder (stadial) and warmer (interstadial) climate states following instabilities of the Atlantic Meridional Overturning Circulation (AMOC) in response to rapidly melting ice sheets. The sequence of abrupt shifts between extreme climate states had profound impacts on ecosystems which make it challenging to reliably quantify state variables like July temperatures within a non-analogue climate envelope. For Europe, there is increasing albeit inconclusive evidence for higher stadial summer temperatures than initially thought. Here we present a comprehensive floral compilation of plant macrofossils from lake sediment cores of 15 sites from S-Scandinavia covering the period similar to 15 to 11 ka BP. We find evidence for a continued presence of plant species indicating high July temperatures throughout the last deglaciation. The presence of hemiboreal plants in close vicinity to the southern margin of the Fennoscandian Ice Sheet implies a strong thermal summer forcing for the rapid ice sheet melt. Consistent with some recent studies, we do not find evidence for a general stadial summer cooling, which indicates that other reasons than summer temperatures caused drastic setbacks in proxy signals possibly driven by extreme winter cooling and/or shorter warm seasons. (C) 2020 The Authors. Published by Elsevier Ltd.Peer reviewe

    Extending the limits of the Borrobol Tephra to Scandinavia and detection of new early Holocene tephras

    Get PDF
    Abstract Analyses of two infilled lakes in Blekinge, southeast Sweden, indicate the presence of at least three tephra horizons of Termination 1 and early Holocene age. Geochemical analyses confirm the presence of the Borrobol Tephra, the Askja Tephra (10,000 14 C yr B.P.), and one previously unreported tephra of Icelandic origin. Extending the limits of the Borrobol Tephra to Scandinavia illustrates that this ash is far more widespread than previously realized and is therefore, an important marker horizon for determining the rate and timing of the initial warming at the start of Greenland Interstade 1 (GI-1) within Europe. The relatively unknown Askja Tephra and the newly discovered HĂ€sseldalen Tephra are stratigraphically placed at the Younger Dryas/Preboreal transition. This paper demonstrates the suitability and success associated with the extraction techniques for tracing microtephra horizons in areas distal to volcanic sources

    Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Quaternary Science 25 (2010): 387-394, doi:10.1002/jqs.1330.Several large abrupt climate fluctuations during the last glacial have been recorded in Greenland ice cores and archives from other regions. Often these Dansgaard-Oeschger events are assumed to have been synchronous over wide areas, and then used as tie-points to link chronologies between the proxy archives. However, it has not yet been tested independently whether or not these events were indeed synchronous over large areas. Here, we compare Dansgaard-Oeschgertype events in a well-dated record from southeastern France with those in Greenland ice cores. Instead of assuming simultaneous climate events between both archives, we keep their age models independent. Even these well-dated archives possess large chronological uncertainties, that prevent us from inferring synchronous climate events at decadal to multi-centennial time scales. If possible, comparisons between proxy archives should be based on independent, non-tuned time-scales.BW acknowledges support from the Swedish Research Council (VR)

    Thermal Casimir Force between Magnetic Materials

    Full text link
    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09, Norman, OK, September 21-25, 200

    HĂ€sseldala – a key site for Last Termination climate events in northern Europe

    Get PDF
    The Last Termination (19 000–11 000 a BP) with its rapid and distinct climate shifts provides a perfect laboratory to study the nature and regional impact of climate variability. The sedimentary succession from the ancient lake at HĂ€sseldala Port in southern Sweden with its distinct Lateglacial/early Holocene stratigraphy (>14.1–9.5 cal. ka BP) is one of the few chronologically well‐constrained, multi‐proxy sites in Europe that capture a variety of local and regional climatic and environmental signals. Here we present HĂ€sseldala's multi‐proxy records (lithology, geochemistry, pollen, diatoms, chironomids, biomarkers, hydrogen isotopes) in a refined age model and place the observed changes in lake status, catchment vegetation, summer temperatures and hydroclimate in a wider regional context. Reconstructed mean July temperatures increased between c. 14.1 and c. 13.1 cal. ka BP and subsequently declined. This latter cooling coincided with drier hydroclimatic conditions that were probably associated with a freshening of the Nordic Seas and started a few hundred years before the onset of Greenland Stadial 1 (c. 12.9 cal. ka BP). Our proxies suggest a further shift towards colder and drier conditions as late as c. 12.7 cal. ka BP, which was followed by the establishment of a stadial climate regime (c. 12.5–11.8 cal. ka BP). The onset of warmer and wetter conditions preceded the Holocene warming over Greenland by c. 200 years. HĂ€sseldala's proxies thus highlight the complexity of environmental and hydrological responses across abrupt climate transitions in northern Europe

    Warm summers during the Younger Dryas cold reversal

    Get PDF
    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.Peer reviewe

    Rainfall variations in central Indo-Pacific over the past 2,700 y

    Get PDF
    Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niño-like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability
    • 

    corecore