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The global climate transition from the Lateglacial to the Early Holocene is dominated by a rapid warming
trend driven by an increase in orbital summer insolation over high northern latitudes and related
feedbacks. The warming trend was interrupted by several abrupt shifts between colder (stadial) and
warmer (interstadial) climate states following instabilities of the Atlantic Meridional Overturning Cir-
culation (AMOC) in response to rapidly melting ice sheets. The sequence of abrupt shifts between
extreme climate states had profound impacts on ecosystems which make it challenging to reliably
quantify state variables like July temperatures within a non-analogue climate envelope. For Europe, there
is increasing albeit inconclusive evidence for higher stadial summer temperatures than initially thought.
Here we present a comprehensive floral compilation of plant macrofossils from lake sediment cores of 15
sites from S-Scandinavia covering the period ~15 to 11 ka BP. We find evidence for a continued presence
of plant species indicating high July temperatures throughout the last deglaciation. The presence of
hemiboreal plants in close vicinity to the southern margin of the Fennoscandian Ice Sheet implies a
strong thermal summer forcing for the rapid ice sheet melt. Consistent with some recent studies, we do
not find evidence for a general stadial summer cooling, which indicates that other reasons than summer
temperatures caused drastic setbacks in proxy signals possibly driven by extreme winter cooling and/or

shorter warm seasons.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

the narrative of cold stadial summers in Europe. For the Younger
Dryas, a shift to lower July temperatures was inferred from

The rapid climate shifts between unusually warm interstadials
and setbacks to glacial-like conditions during stadials are particu-
larly well documented in lake sediments south of the Fenno-
scandian Ice Sheet (FIS) during the deglaciation. Already more than
80 years ago (Nilsson, 1935), the re-emergence of cold tolerant
plant species including the eponymous Dryas octopetala during the
most recent stadial, the Younger Dryas (YD, ~12.8—11.7 ka BP), was
interpreted as a return to glacial like conditions with open tundra-
like vegetation in Denmark (Iversen, 1954) and S-Sweden (Nilsson,
1935). Subsequent studies over recent decades mostly confirmed
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chironomid-based reconstructions with a particularly strong cool-
ing in NW-Europe (e.g. Heiri et al., 2014), but also in S-Sweden
(Muschitiello et al., 2015a; Wohlfarth et al., 2017, 2018). The abrupt
stadial cooling is generally attributed to a sluggish state of the
Atlantic Meridional Overturning Circulation (AMOC) and a south-
ward migration of the sea-ice front (e.g. Bjorck et al., 1996;
Broecker, 1998; McManus et al., 2004; Stouffer et al., 2006).
However, some recent studies provide conflicting evidence for
little to no summer cooling during the Younger Dryas across a large
number of sites from NW-Europe (Birks and Birks, 2014) to central
Europe (Schenk et al., 2018) and E-Europe (Magyari et al., 2019).
Plant macrofossil and pollen records indicate that cold-tolerant
boreal pine and birch woodland remained common during the
Younger Dryas in Brandenburg (eastern Germany) (Kobe et al.,
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2019) and that a pine forest survived the Younger Dryas at least
locally in the Elbe/Jeetzel valley in northern Germany (Turner et al.,
2013). Preserved in situ remains of pine trunks indicate at least local
presence of trees in north-central Europe during the Younger Dryas
(Kaiser et al., 2018). These findings suggest that the cold stage
vegetation patterns in central Europe experienced a stronger con-
trol by local soil and relief conditions (Theuerkauf and Joosten,
2012).

In light of a widespread inference of relatively high stadial July
temperatures of ~14 °C in the Netherlands and NE-Germany (Birks
and Birks, 2014), and >15 °C across central and E-Europe (Schenk
et al., 2018) with up to 17 °C in the Pannonian Basin (Magyari
et al., 2019), it has been suggested that other reasons than low
summer temperatures per se are responsible for the strong envi-
ronmental shifts during the YD (Birks and Birks, 2014; Schenk et al.,
2018). It has been proposed that increased seasonality with severe
winters dominated periods of abrupt climate shifts (Denton et al.,
2005), which is consistent with recent climate model simulations
(Schenk et al., 2018).

In addition to seasonal temperature changes, a shift to drier
conditions at the Allered-YD transition may have contributed to a
widespread disappearance of forests. For the first half of the YD, a
widespread hiatus in northern German lake sediments is indicative
of very dry conditions (Usinger, 1981). Paleo-soils with sandy
aeolian layers containing high amounts of charcoal, which extend
from the Netherlands (Usselo soils) in the west to N-Germany and
Poland in the east (Finow soils), indicate high fire activity mainly in
the late Allerad (so even before stadial cooling) but notably also
during the YD and to a lesser extent during the Preboreal (Kaiser
et al., 2009). This is indicative of a shift to dry terrestrial condi-
tions towards the end of the deglaciation. Under stadial conditions,
hydroclimate reconstructions show a clear shift to even drier con-
ditions during the YD e.g. in W-Germany (Rach et al., 2014, 2017)
and in S-Sweden (Muschitiello et al., 2015a; Wohlfarth et al., 2017,
2018).

Owing to the extreme shifts in both, seasonal temperatures and
aridity, it is challenging to conclude whether changes in season-
ality, summer temperature and/or aridity were major drivers for
bio(geo-)chemical shifts and related climate proxy signals under
Lateglacial conditions.

Paleo-proxy studies have, during the past decades, moved from
being predominantly descriptive/qualitative to providing quanti-
fied climate estimates that can be compared across spatial and
temporal scales and used to evaluate climate model performance
(e.g. Heiri et al., 2014; Renssen et al., 2015; Schenk et al., 2018). A
major draw-back of most biological or geochemical proxies is,
however, their restriction to the warm or growing season, which
corresponds to spring/summer in high and low latitudes. As indi-
cated by a numerical lake model simulation for Lateglacial condi-
tions in S-Sweden (Ahmed et al, 2018), lakes under stadial
conditions were probably ice-covered until early June even if peak
summer air temperatures were high. This implies that seasonality
changes may indeed dominate (Denton et al., 2005) over any other
changes that may affect different proxies differently. Owing to the
different seasonal sensitivities, it is hence crucial to analyse as
many different proxies as possible to gain a complete picture of
paleoclimatic changes.

The composition of plant and animal remains in lake sediments
are generally limited by a number of (often unknown) factors such
as lake size, water depth, water temperature, type and extent of the
fringing vegetation, local soil and moisture conditions, exposure
and topography, microclimate, predators and competition. Trans-
port of terrestrial plant and animal remains into a lake, rapid
embedding of the material and anoxic conditions at the sediment-
water interface are furthermore crucial for the preservation of a

fossil assemblage. Biological proxy data used in lake sediment
studies are therefore, by their nature, incomplete and only repre-
sent a fraction of the biota that lived at a certain time in and around
the study site. Moreover, sampling location and sample size,
preparation techniques and taxonomic issues add further un-
certainties to the interpretation of fossil assemblages. A recent
study, comparing pollen, plant macrofossil data and environmental
DNA in lake sediments for example highlights some of these biases
and shows that DNA allows detecting many more plant taxa than
traditional paleoecological methods (Parducci et al., 2019) and that
absence of certain taxa in a sample does not mean that they were
not present in the local vegetation. Although the ancient flora and/
or fauna preserved in lake sediment samples provide an incomplete
view on the presence/absence of past biota, they are important
means to obtain qualitative reconstructions of past climatic and
environmental conditions.

The step from qualitative climatic and environmental parame-
ters to obtaining quantified climate estimates involves the use of
different techniques, such as the climate indicator species, mutual
climate range or transfer functions methods (Atkinson et al., 1986;
Thompson et al., 2012). Developed more than 100 years ago
(Johansen, 1904; Iversen, 1954), the climate indicator species
method is based on a species’ present-day geographic distribution
and summer temperature requirements. The method was later
refined (Kolstrup 1979, 1980) and extended to include more plant
species and has since been used for a range of plant macrofossil
data sets (e.g. Brinkkemper et al., 1987; Isarin and Bohncke, 1999;
Bos, 1998; Bos et al., 2004; Helmens et al., 2007). However, as
pointed out by for example Iversen (1954), Iversen (1964) and
Brinkkemper et al. (1987), the indicator species method has clear
limitations, since some plants can remain in a vegetative state or be
preserved in a seed bank also at the outer limit of their general
optimal distribution area. The comparison between a plant’s
present-day distribution and its mean July temperature re-
quirements can therefore lead to lower temperature estimates if
the northern geographical distribution limit and its related thermal
limit is based on sparse presence of a species. When transferred to a
fossil assemblage, this will result in reconstructed temperatures
that are too low. Recent studies have therefore moved towards
defining thermal limits based on a common northern distribution
limit rather than on sparse presence beyond any limits (Valiranta
et al., 2015; Schenk et al., 2018). Moreover, environmental condi-
tions today are considerably different from those during the past,
when for instance competition, soil conditions, and shading were
likely important additional factors (Iversen 1954, 1964). This im-
plies that the absence of many species may be unrelated to climatic
parameters like July temperature.

Since Iversen (1954, 1964)’s initial studies, other techniques
have been developed to reconstruct past temperatures from fossil
biota. One of these is the mutual climate range (MCR) method,
which leans on Iversen (1954)’s approach and on the assumption
that today’s climatic tolerance range of a species can be applied to
fossil assemblages (Atkinson et al., 1986). The method has mainly
been applied to coleoptera assemblages (e.g. Atkinson et al., 1987;
Lowe et al., 1995; Coope and Berglund, 1986; Coope and Lemdahl,
1995; Coope et al., 1998; Bjorck et al., 1996) to reconstruct winter
and summer temperatures, but has also been used for other types
of fossil biota.

The modern analogue technique (MAT) (Guiot, 1990; Jackson
and Williams, 2004) is based on statistical comparisons of large
modern pollen data sets to fossil samples in respect to analogies in
taxa composition and abundance. The climate variables for the
modern data set can then be transferred to the fossil assemblages.
Various statistical calibration or transfer function techniques are in
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use to reconstruct summer temperatures using fossil chironomids,
diatoms and also pollen (e.g. Birks et al., 1995; Birks et al., 1998;
Juggins, 2013). These build on extensive regional training sets, for
which recent/sub-recent assemblages (e.g., chironomids, diatoms,
pollen) were analysed from surface sediments of lakes across
various altitudinal, latitudinal and ecological gradients and
compared to mean ambient summer air temperatures. The statis-
tical comparison between these training sets and the fossil as-
semblages allows estimating past summer temperatures (e.g. Birks
et al.,, 1998; Bigler et al., 2002; Larocque and Bigler, 2004; Juggins,
2013; Heiri et al., 2014).

The climate indicator species method (Iversen, 1954) has
recently experienced a revival (Valiranta et al., 2009, 2015; Schenk
et al., 2018) with the employment of a unique temperature gradient
data set from Finland. This data set is composed of detailed modern
species-specific spatial plant distribution surveys (http://www.
luomus.fi/kasviatlas) and long-term meteorological observations,
both available for 10 x 10 km grid cells (Venalainen et al., 2005;
Lampinen and Lahti, 2019). The plant distribution database, which
is based on continuous botanical surveys, can thus be directly
compared to climate variables and allows the reconstruction of
quantitative minimum mean July temperatures (Valiranta et al.,
2015; Schenk et al., 2018). As part of this study we further extend
the number of climate indicator plant species which are based on a
systematic definition of their thermal limits estimated from a
common northern distribution limit over the temperature gradient in
Finland.

We then use these data sets and apply them to a compilation of
15 published and unpublished Lateglacial and Early Holocene plant
macrofossil records from southern Sweden and Denmark. The plant
macrofossil data sets are from multiple sites in different topo-
graphic settings, but within a confined region and covering the
same time intervals, and provide a broad spectrum of Lateglacial
and early Holocene plant taxa. It allows us to evaluate the reliability
and consistency of the climate indicator species-based summer
temperature reconstruction and provides minimum mean July
temperature estimates that can be compared to climate
simulations.

2. Study region

Parts of Denmark and all of southernmost Sweden were covered
by the Fennoscandian Ice Sheet (FIS) during the Last Glacial
Maximum. The region became ice free between 22 and 13 thousand
years (ka) ago (Fig. 1) (Lundqvist and Wohlfarth, 2001; Houmark-
Nielsen and Kjaer, 2003; Houmark-Nielsen et al., 2005; Hughes
et al, 2016; Stroeven et al., 2016). Stagnant ice, however,
remained in several areas (Bjorck et al., 1996; Wohlfarth et al., 2017,
2018) and led to delayed start of sedimentation in several of the
lake basins for which we have compiled data.

During the last deglaciation, the region was influenced by the
gradual waning of FIS in the north, the Baltic Ice Lake to the east and
south-east (Bjorck, 1995; Andrén et al., 2011) and a North Sea area
that was mostly above sea level to the west (Bjorck and Digerfeldt,
1991). Ice sheet melting, isostatic rebound, eustatic sea level rise
and damming of the Baltic Ice Lake led to a complicated pattern
with flooding of low-lying land areas and/or land bridges between
Denmark and southernmost Sweden (Bjorck, 1995; Andrén et al.,
2011).

A large number of Lateglacial lake sediment records have been
analysed for a variety of paleo-proxy parameters (e.g., pollen,
macro remains, coleoptera, oxygen isotopes) in Denmark and
Sweden during the last 80—100 years (Iversen, 1954; Nilsson, 1935;
Berglund, 1966; Berglund et al., 1994; Lowe et al., 1994; Berglund,
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Fig. 1. Locations of study sites in Denmark and southern Sweden (dots) in the context
of Fennoscandian Ice Sheet retreat from 15 to 11 ka BP. Ice margins at 1 kyr intervals
are shown using the DATED-1 ‘most credible’ estimates (Hughes et al., 2016). Note, that
a present-day topography is shown here. For Lateglacial paleo-shorelines, see e.g.
Wohlfarth et al. (2017, 2018).

1996), but a compilation and summary of all these and more
recent studies has never been made.

In this study, we compiled available floral information from 14
published sites supplemented by so far unpublished plant macro-
fossil lake sediment records and, in addition, a compilation of
published pollen and plant macrofossil records from Blekinge in
southeast Sweden (Table 1). Our study region covers a north-south
gradient of ~370 km and a maximum east-west distance of
~170 km. The sites are shown in Fig. 1 and information about the
sites and references to the original data is provided in Table 1.

3. Materials and methods

Our data compilation (Schenk et al., 2020; Supplementary Data
A) comprises six published (Attekopsmosse, Bjorkerodsmosse,
Hdkullsmosse, Hasseldala Port, Korslattamossen, Toppeladugdrd)
and three previously unpublished (Madtjarn, Mjallsjon, Torreberga)
(Supplementary Data B) plant macrofossil data sets from south-
ernmost Sweden, one compilation of pollen and plant macrofossil
records from Blekinge (Berglund, 1966) and five published plant
macrofossil records (Bolling Sg, Hasselg, Slotseng, Sendre Kobber-
dam, Trollesgave) from Denmark (Fig. 1, Table 1). All of the selected
plant macrofossil diagrams were accompanied by a pollen stratig-
raphy and/or by a detailed radiocarbon chronology, which allows
for inter-site correlations.

In a first step, we selected all terrestrial, telmatic and aquatic
plant taxa that were determined below family level. These are lis-
ted in Schenk et al. (2020) and Supplementary Data A. To ensure
that the samples were derived from within a pollen stratigraphic
zone, we excluded samples closest to a pollen stratigraphic
boundary. We also added very detailed pollen stratigraphic work
from various sites in Blekinge, south-easternmost Sweden
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Sites with plant macrofossil records from southern Sweden and Denmark used for the compilation. Site locations are shown with their #ID in Fig. 1. The previously
unpublished data by Bennike is provided as Supplementary Data B. The full compilation of plant species (Schenk et al., 2020) is available as Supplementary Data A.

#ID Site name Altitude [m a.s.l.] Lat. [dec °] Lon. [dec °] References
1 Lake Madtjarn 135 58.62°N 12.33°E Bjorck et al. (1996);
Bennike, unpublished
2 Blekinge sites - 56.15°N 15.32°E Berglund (1966)
56.30°N 15.87°E
3 Hasseldala Port 63 56.27°N 15.02°E Parducci et al. (2019)
4 Lake Mjallsjon 72 57.01°N 12.59°E Bjorck et al. (1996);
Bennike, unpublished
5 Attekopsmosse 175 56.38°N 12.85°E Wohlfarth et al. (2018)
6 Hakullsmosse 125 56.29°N 12.53°E Liedberg Jonsson (1988)
7 Bjorkerodsmosse 125 56.28°N 12.53°E Liedberg Jonsson (1988)
8 Korsldttamossen 118 56.10°N 13.07°E Hammarlund and Lemdahl (1994)
9 Sendre Kobberdam =21 55.77°N 12.44°E Bennike and Mortensen (2018)
10 Torreberga 7 55.62°N 13.23°E Bjorck et al. (1996);
Bennike, unpublished
11 Toppeladugdrd 35 55.60°N 13.37°E Lemdahl (1988)
Lieberg-Jonsson (1988)
12 Trollesgave — 55.28°N 11.80°E Fischer et al. (2013)
13 Hasselo — 54.73°N 11.90°E Mortensen et al. (2014a)
14 Bolling Se - 56.18°N 09.37°E Bennike et al. (2004)
Bennike, unpublished
15 Slotseng 40 55.33°N 09.27°E Mortensen et al. (2011); Lemdahl et al. (2014)

(Berglund, 1966). For these latter records, we included macroscopic
plant remains, taxa whose pollen are not transported over long-
distances, taxa for which more than one pollen grain was re-
ported and for which species identification was reliable according
to (Berglund, 1966). To avoid false presence of indicator species in a
given stratigraphic zone, we also excluded samples that were close
to a pollen zone transition. We note, however, that we cannot rule
out the possibility of minor Allergd (AL) macrofossil presence in YD
sediments for some Danish lakes, in situations where AL macro-
fossils could be preserved outside the lake system during the drier
early YD and re-enter the lake during the more humid later YD
(Mortensen et al., 2014b). As we find indicator species with simi-
larly high thermal requirements in other lakes and across much of
Europe during the YD (Schenk et al., 2018), it is unlikely to affect the
overall results.

For an age assignment to the Lateglacial and Early Holocene
regional pollen zones, we followed the zonation published by the
respective authors, but changed the transition between the
Younger Dryas and Preboreal (PB) pollen zones in accordance with
(Bjorck et al., 1996). This implies that the base of the YD/PB tran-
sition zone, which originally was a separate pollen zone between
the YD and the PB pollen zones, now corresponds to the start of the
Holocene.

In a second step, we compared the identified plant taxa (Schenk
et al., 2020; Supplementary Data A) to plant distribution maps for
Norden (Scandinavia) (Hultén, 1950; maps are also available online:
http://linnaeus.nrm.se/flora/) to assure that the current range of
the species is within the boreal to arctic vegetation zones. Because
some plant species can reach their common northern distribution
outside of Norden, we additionally evaluated Hultén'’s distribution
maps for Norra halvklotet (northern hemisphere; Hultén and Fries,
1986) and excluded plants that are found in arctic regions like
Greenland or Svalbard. This was e.g. the case for Callitriche her-
maphroditica which appears to be sub-arctic in Norden with a
tendency to brackish preference but which is clearly present at
arctic conditions on Disko island, W-Greenland (Bennike, 1995). We
then compared the remaining taxa to the very high-resolution
species-specific spatial plant distribution data set for Finland
(Venalainen et al., 2005; Lampinen and Lahti, 2019; http://www.
luomus.fi/kasviatlas), which covers the years 1971-2001. In
accordance with Valiranta et al. (2015) and Schenk et al. (2018), we

assume that anthropogenic pressure on plant distributions is
negligible and distribution ranges represent a relatively natural
state. Finland has a weak southwest (semi-oceanic) to northeast
(semi-continental) oceanity-continentality gradient and a gradual
precipitation gradient with a difference of ca. 200 mm a~! between
southern and northern Finland. Importantly, Finland has a pro-
nounced south-north temperature gradient with a mean July air
temperature of ca. 17 °C in the south-southeast and of ca. 7.5 °C in
the mountains of western Lapland. Finland therefore covers the
hemiboreal, boreal and subarctic vegetation zones and many plant
species reach their common northern distribution limits within
Finland. Only in the northernmost part of the country are plant
distributions limited by elevation-related climatic conditions.

In a third step, we selected those taxa, which are endemic to
Fennoscandia and have a clear common northern distribution limit
in Finland (Schenk and Valiranta, 2020; Supplementary Data C).
Taxa with rare occurrences or specific distribution patterns (e.g.,
only along the Baltic Sea shore, only on calcareous soils/bedrock), or
taxa that are today common and not limited by temperatures
reached in N-Finland were excluded from further analyses. The
excluded taxa are, however, listed as “plants without quantification”
in Schenk and Valiranta (2020) and Supplementary Data C. We
moreover excluded taxa that contain several species (e.g. Ranunclus
sect Batrachium.) with different distribution limits. Since Nymphaea
alba, which has a clear distribution pattern, comprises several sub-
species, which were not further determined in the respective
macrofossil diagrams, we assigned the recorded macrofossil re-
mains to Nymphaea sp. We also grouped C. demersum and
C. submersum together as Ceratophyllum spp.; C. submersum is rare
today, but we cannot exclude that it was more common during the
Lateglacial/Early Holocene. Since Callitriche was not further iden-
tified to lower taxonomic level in Hasselg, we here use a conser-
vative estimate of 13.7 °C.

Various plant species have changed names over time and are, in
several of the older plant macrofossil records, shown with old
names. The synonyms for the various plant species were added as
comments in Supplementary Data C.

In a fourth step, we determined the grid points for the up to five
common northern plant distribution locations for each taxon in
Finland and compared these to average July temperatures for the
same 10 x 10 km grid cells from the meteorological data set for the
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years 1971—-2001 (Vendldinen et al., 2005; Lampinen and Lahti,
2019). The coordinates and related July temperatures of the used
grid points are included in Schenk and Valiranta (2020) and Sup-
plementary Data C. Although we only use climatological mean July
temperatures for estimating thermal limits in this study, the
dataset contains additional information about July temperatures of
the coldest/warmest days/months during 1971-2001 accompa-
nying the climatological mean value. Comparable mean July tem-
peratures in a much more continental climate of the deglaciation
(e.g. Schenk et al., 2018) or other periods may have experienced a
much larger range of extreme temperatures which may be studied
in the future e.g. with the help of climate model simulations. The
full climatological data range over all thermal limits is visualized in
Fig. 2.

It is important to note that the thermal limits for indicator plant
species following Valiranta et al. (2015) and Schenk et al. (2018) are
defined based on their common northern distribution limit and not
based on the coldest occurrence at an isolated location. This implies
that the thermal limits are systematically higher than older defi-
nitions based on outpost individuals at unusually favourable
locations.

Using a common northern distribution limit has two main ad-
vantages: First, the definition is more robust by omitting unusually
favourable site localities which may be caused by local climatic or
edaphic conditions (e.g. wind protected, south facing slope). In
addition to usually small standard errors for the calculated thermal
limits (Supplementary Data C), this is demonstrated by the high
consistency of a near-zero difference between median vs. mean
values in Fig. 2 despite the reliance on only very few locations.
Second, the generally rare finds of plant macrofossils in lake sedi-
ments typically reflect a common and persistent presence of a
given plant species rather than individual outpost plants. Ancient
DNA analysis confirms that the in situ presence of plants reflects
common presence at the lake site (Parducci et al., 2019). Based on
this empirical probabilistic argument, it is not plausible to assume

30

N
(%]

N
o

mean northern distribution T-July [°C]
=y tr

0 5 10 15 20 25 30
median northern distribution T-July [°C]

Fig. 2. Consistency of the common northern distribution limit definition and the
relation of climatological mean July temperatures to the overall July climatology of
Finland for the period 1971—-2001. The almost perfect linear agreement of the median
vs. mean northern July limit for all used plant indicator species shows that the defi-
nition of using up to five grid points as northern distribution limit is robust and un-
biased relative to outliers which may be caused by complex terrain.

that rare finds of plant macrofossils would represent individual rare
outpost occurrence. Hence, it would be inconsistent to use a much
colder thermal limit of outpost species when the plant species in
the sediment reflect a common presence.

To document the typically found spatial distribution differences
between regions with a common presence relative to areas with
scattered presence, we accompanied the list of quantified Tjyy
values in Supplementary Data C (Schenk and Valiranta, 2020) with
brief remarks about the common distribution (sub-polar, northern
or central boreal, hemiboreal-temperate) and scattered occur-
rences like “scattered up to N-Finland, main distribution is boreal”
etc. These generalized remarks are based on the distribution maps
of Hultén (1950) and Hultén and Fries (1986). As can be inferred
from these remarks, there is a clear tendency for scattered occur-
rences in the neighbouring climate zone, i.e. beyond the main
population locus. This implies that e.g. species with a common
northern distribution limit within the central boreal zone have
typically a scattered occurrence in the northern boreal zone etc.

The spread between the common thermal limit and the coldest
considered occurrence can be used as a taxa-specific uncertainty
where a given July temperature may be overestimated (Valiranta
et al., 2015; Schenk et al., 2018). For the plant species used in our
calibration dataset, the spread of the difference of mean thermal
limit minus coldest limit along the common northern distribution
limit ranges from 0.1 K to 2.7 K with a median (mean) difference of
0.6 (0.9) K. The individual taxa uncertainty is shown in Supple-
mentary Data C (colour coded, green = as good as or better than
50% of the plant species, light green = best 5%, light
orange = within 75%, darker orange 75—95%).

The standard error of the mean (o/vN) for the common
northern limits are generally small and indicate a small spread of
the northern distribution grid points used do define the thermal
limit. A comparison of the mean vs. median thermal limit based on
up to five grid points yields almost no difference and confirms that
the estimate of the climatological mean for the thermal limit is not
biased/skewed by outliers (Fig. 2). As additionally shown in Fig. 2,
this also applies to the estimate of warmest/coldest months and
days for July in 1971—2001 related to the climatological mean of
plant indicator species.

4. Results
4.1. Extended database for climate indicator plant species

In total, we were able to define thermal limits for N = 62
different climate indicator plant species (Fig. 3; Schenk and
Valiranta (2020); Supplementary Data C). For each plant taxa, the
mean minimum July temperature [°C] is given based on the com-
mon northern distribution limit in Finland. The coordinates and July
mean temperatures of the used grid points for the derivation of the
thermal limits are provided in Schenk and Valiranta (2020) and
Supplementary Data C together with estimated July temperatures,
the standard error of the mean [SE in °C] and the taxa uncertainty
(the difference between the mean and the coldest location found at
the common northern distribution). In addition, the dataset con-
tains a list of 97 plant taxa for which we do not assign a thermal
limit either because the taxa are currently not present in Finland or
because they have a problematic distribution and/or cannot be
reliably differentiated from other taxa with different thermal re-
quirements. The reasons for refraining from quantifying are given
as comments along with the taxa names in Schenk and Valiranta
(2020) and Supplementary Data C.

For the 62 indicator species, the taxa uncertainty, and hence a
potential warm bias of the common northern distribution limit,
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Fig. 3. Climate indicator plant species from modern Finland and their presence during the Lateglacial-Holocene transition in southern Scandinavia. The plant-specific July
temperature limits are based on a common northern distribution limit in Finland (1971—2000). The climate zone classification represents the region in Finland where the indicator
species reaches its common northern distribution limit following the distribution maps by Hultén (Hultén, 1950; Hultén and Fries, 1986). The standard error of the mean and taxa
uncertainty for the thermal limits together with comments on the regions of scattered occurrence after Hultén are listed in Supplementary Data C.
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is referred to the Web version of this article.)

ranges from 0.1 to 2.7 °C with a median (mean) of 0.6 °C (0.9 °C).
With the exception of Silene nutans, indicator species with thermal
requirements >12.5 °C tend to have a relatively small taxa uncer-
tainty (<1.5 °C) while the thermal limits in colder regions are more
uncertain. Over all 62 species, the uncertainty of thermal limits
linearly decreases from colder to warmer limits with 0.26 °C per
degree (r* = 0.43).

As introduced by Valiranta et al. (2015) and used by Schenk et al.
(2018), the taxa uncertainty is probably the only useful statistical
uncertainty to estimate a potential warm bias of an indicator spe-
cies in the past. As relying on rare presence of indicator plant
species comes with a risk of false absence of even warmer taxa,
there is no possibility to estimate a potential cold bias of the July
estimate (for details see Valiranta et al., 2015; Schenk et al., 2018).
The best solution for increasing confidence in the July estimates is

hence to rely on the analysis of as many sediment cores and lake
sites within a certain region as possible. Future studies using
ancient DNA from lake sediments have a high potential to signifi-
cantly reduce the false absence problem as ancient DNA allows for
an extended identification of species growing at the lake site and
their abundance (Parducci et al., 2019). This implies that the ther-
mal limits from the climate indicator approach can increasingly be
applied to plants identified through their ancient DNA.

In addition to the statistical uncertainty estimates for common
thermal limits in Finland, we evaluated the general distribution
maps of the selected plant indicators based on Hultén’s maps for
Norden (Hultén, 1950) and the Northern Hemisphere (Hultén and
Fries, 1986). Based on these maps, we added brief standardized
descriptions to Schenk and Valiranta (2020) and Supplementary
Data C about the climate zones with scattered occurrence and the
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northernmost zones where they reach their common distribution
limit. We classified the climate zones containing the common
northern distribution of indicator plants as sub-polar, northern or
central boreal and hemiboreal-temperate for a distribution in
southernmost Finland. Fig. 3 shows the common minimum July
thermal limits of the 62 climate indicator plant species together
with the climate zone where they reach their common northern
distribution limit.

The dataset based on the temperature range of Finland does not
allow for a quantification of some important indicator plants which
grow at even colder temperatures outside of Finland. To at least
partly account for this limitation when analysing sediment cores
from the deglaciation, we also consider a (possibly non-conclusive)
shortlist (Table 2) of plant indicator species which are known to be
cold-adapted plants including e.g. the eponymous Dryas octopetala.
Changes in the presence of these cold-adapted plants provide
important additional information beyond the focus on the mini-
mum July temperature of plant indicator species with the highest
thermal limit. It should be noted though that cold-adapted plants
are usually also heliophytes. It is therefore not possible to interpret
the presence of cold-adapted plants as indicative of generally low,
summer or growing season, temperatures.

4.2. Compilation of indicator plants for S-Scandinavia (~15—11 ka
BP)

From the compilation of published and unpublished climate
indicator plant species, we were able to select 96 samples which
can be quantified for their July temperature requirements from 15
sites distributed across southern Sweden and Denmark (Fig. 1). The
number of quantified indicator species is considerably lower than
the overall identified plant fossil taxa in the sediment cores (Fig. 4b,
Schenk et al., 2020; Supplementary Data A). As outlined in the
methods, we excluded all samples, which were close to original
chronological boundaries and could lead to a false presence in a
wrong chrono-, climate- or bio-zone. In addition, we excluded taxa
which consist of species which are difficult or impossible to
distinguish from other species, which have different thermal
requirements.

Fig. 4 provides an overview on the number and classification of
the plant indicator compilation based on all 15 sites. The numbers
in brackets in Fig. 4a give the total number of quantifiable indicator
species for each time period while the pie charts display the relative
distribution of climate zones represented by the indicator species
counts from all 15 sites following the classification from Fig. 3.
Although the pre-Allergd data are based on a low number of sites
and samples, we note the remarkably early presence of hemiboreal
and central boreal indicator species already in the pre-Bglling (pre-
B@). With exception of the short Older Dryas (OD) stadial, the
compilation indicates a persistent presence of at least central
boreal or even hemiboreal indicator species during the Lateglacial

Table 2

List of cold-adapted indicator plants often found in Lateglacial sediments. Note
that cold-adapted plants are usually also heliophytes and do not always imply low
summer temperatures per se (cf. Fig. 4). Some of these taxa, such as Betula nana,
occupy a wide range of climate zones.

Arctostaphylos alpina
Betula nana
Cerastium alpinum
Dryas octopetala
Gentiana nivalis
Lychnis alpina
Minuartia rubella
Minuartia stricta

Papaver sect. Scapiflora
Polygonum viviparum
Potamogeton filiformis
Ranunculus hyperboreus
Salix phylicifolia

Salix herbacea

Salix polaris

Salix reticulate

Saxifraga adscendens
Saxifraga aizoides
Saxifraga oppositifolia
Selaginella selaginoides
Silene acaulis
Thalictrum alpinum
Viscaria alpina

including the YD stadial. As shown in Fig. 4b, the Lateglacial period
hosts generally a high number of cold-adapted plants despite the
presence of indicator species with relatively high thermal re-
quirements (Fig. 4a). Although the fraction of cold-adapted indi-
cator plants [%] relative to the total number of plant species is
higher during stadials (OD, YD), their dominance persists also
during the interstadials (B9, AL) (Fig. 4c). Only with the onset of the
Holocene do plant indicators with higher thermal requirements
dominate over the presence of cold-adapted plants in the PB.

4.3. Local July temperature reconstructions

The compilation of climate indicator species from our 15 sites in
Fig. 4 demonstrates the co-existence of plants with very different
thermal requirements and tolerances throughout the Lateglacial
and to a lesser extent even PB. Despite the dominance of cold-
adapted plants/heliophytes and a notable presence of sub-polar
species, a large fraction of species indicates that warm summer
conditions as found today in southern to central Finland prevailed
throughout the Lateglacial since ~15 ka BP. To determine the related
minimum July temperatures for the different periods, Fig. 5 shows
the July temperature estimates based on up to five indicator species
with the highest thermal limits compiled from the 15 sites.
Consistent with Fig. 4a, the minimum July temperature estimates
cover a wide range owing to the co-existence of plants with very
different northern distribution limits.

As was already shown in Fig. 4 for the total number of species,
the more recent periods of the PB, YD and AL are well represented
in terms of both number of sites and presence of indicator plants. In
contrast, the OD and B@ are only based on three to four sites and
pre-B@ is only available from Bjorkerodsmosse. This makes it
difficult to reliably infer July temperatures for OD, B& and pre-B@.

The comparison of sites indicates that the spatial distribution
across Denmark and S-Sweden with a north-south transect of
~370 km and an east-west transect of ~170 km (Fig. 1) is rather
heterogeneous without any systematic geographical differences.
Due to the relatively low number of indicator species, it is not
possible to estimate whether the heterogeneity is due to local site-
specific edaphic differences or simply due to scarcity of data and/or
false absence in the sediment core.

4.4. Regional July temperature reconstruction for S-Scandinavia

The heterogeneous site-specific results in Fig. 5 highlight the
importance to form a regional compilation of sites within a region
to determine the paleoclimate based on scarce indicator species.
This is i.e. true for the YD where a widening of the distribution and
large differences between different sites (Fig. 5) would lead to very
different estimates of July temperatures if based on only one site.

Fig. 6 presents the overall statistics derived from merging all
local sites from Fig. 5 into one regional sample representing the
minimum July temperature estimates for S-Scandinavia for major
climate periods during ~15—11 ka BP. The histogram in Fig. Ga
presents an overview for the temperature distribution based on the
total number of July estimates (black) and the distributions for the
different (inter-)stadials and early Holocene (colours). With
exception of the data-sparse OD and the PB, Lateglacial periods
tend to have a skewed bi-modal distribution where a large number
of estimates is concentrated around 12—13 °C (stadials) to 12—14 °C
(interstadials) while a secondary peak around 16 °C contains
several different species surrounding the species with highest
thermal limits in the regional compilation.

As a result, there is a large temperate spread for the 3rd quartile
(containing 25% of thermal limits above the median) towards
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warmer July estimates and a very small spread for the 2nd quartile
towards cooler estimates surrounding the median July estimate for
the different time periods (Fig. 6b). The high values for the warmest
minimum July temperature estimates for AL, YD and PB are clearly
above the mean or median July estimate which highlights the
importance of using individual indicator species with the highest
thermal requirements as climate indicator species for the minimum
July temperatures rather than much colder mean or median values.

This is also clearly reflected in the relative distribution of July
temperatures in Fig. 6b. Here, the median located between the 2nd

and 3rd quartile indicates a higher number of cold-adapted plant
species during the YD including cold-tolerant plants (Betula nana,
Empetrum, Dryas octopetala) which are absent during other time
periods. The YD also contains several indicator plants with much
higher thermal requirements. The comparison of the median, mean
and quartiles of available July temperature estimates indicates
notable differences in results if they are based on the number or
abundance of plants rather than on the warmest indicator species
(red triangles). Interestingly though, and despite the widening of
the distribution during the YD, the overall mean (black diamonds)
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July temperatures calculated over all samples within a time period
appears to follow the general transient evolution of the warmest
climate indicator plant species (red triangles).

The warmest indicator species (Fig. 6b) from our compilation
indicate that with the exception of B@ and OD (Tjyy > 14 °C), July
temperatures in S-Scandinavia were surprisingly high with ~16 °C
during the pre-B@, AL, YD and PB. The presence of plants with a
modern northern distribution limit in S-Finland implies high
hemiboreal summer temperatures throughout the deglaciation
south of the retreating Fennoscandian Ice Sheet.

We have, however, low confidence in the robustness of the pre-
AL estimates owing to the sparse data and low number of sites.
Both, the B@ and OD, were relatively short climatic periods and are
only captured by three to four sites. It is therefore uncertain if the
cooler estimates are realistic or simply due to false absence of
warmer plant indicators during these short time intervals. The
most remarkable results are the presence of unusually warm in-
dicator species already during the pre-B@. The warmest indicator
species of the pre-B@ appears to be as warm as the PB (Herniaria
glabra, Tyyy > 16.5 °C). Relatively high July temperatures for the
pre-B@ are supported by the presence of two additional indicator
plants (Silene nutans, Alisma plantago-aquatica) with thermal limits
around 14—15 °C. The sparse presence of these plants implies that
hemiboreal conditions may already have been reached ~15 ka BP.
However, more evidence is required to support these results, which
are based on a few species only.

Overall, it is interesting to note that the spread of minimum July
temperature estimates within the same site and between sites
(Fig. 5) is smaller for PB and AL, while the YD stadial shows a
widening of the distribution containing both low and high July
temperature estimates. This is consistent with the increased rela-
tive and absolute presence of cold-adapted plants during stadials
(Fig. 4b and c) despite the continued presence of warm indicator
species. This implies that rather a change in seasonality (Denton
et al., 2005; Schenk et al., 2018) or other factors (Birks and Birks,
2014) define harsh stadial conditions while peak summer tem-
peratures remain high.

5. Discussion

The availability of sites and hence the number of plant macro-
fossils decreases back in time over the deglaciation. In some cases,
the delayed lake formation was due to bodies of stagnant ice
(Bjorck et al., 1996) (Wohlfarth et al., 2017), (Wohlfarth et al., 2018).
It is also likely that unstable catchment soils and higher run-off
during the early lake development phase delayed the establish-
ment of dense vegetation (Kylander et al., 2013). Turbid waters
during this phase were not beneficial for submerged aquatic plant
taxa. It is therefore important to note the very early presence of
plant indicator species with remarkably high thermal re-
quirements, which are already found in the pre-Belling at
Bjorkerodsmosse with Herniaria glabra (Tj,y > 16.5 °C), Silene
nutans (15.1 °C) and Alisma plantago-aquatica (14.4 °C). It should be
noted that additional macrofossils at Slotseng have been dated to
be pre-Bolling, namely Lotus corniculatus (14.5 °C) and Potamogeton
praelongus (12.5 °C) (Mortensen et al.,, 2011). These were not
included in our study following our strict protocol to exclude
samples too close to (inter-)stadial boundaries. Although based on
sparse data, this implies that summer temperatures in S-Sweden in
the late Pleniglacial around 15 ka BP were already high and close to
modern temperatures in the region as soon as the lakes evolved
near the southern margin of the Fennoscandian Ice Sheet.

Although more sites across a larger spatial area are required to
confirm the pre-Allered results from this study, it appears that July

temperatures were already high as soon as the lakes started to
form. Similar results are known for the deglaciation around
Greenland where remarkably high summer temperatures ~4—7 °C
warmer than today were reconstructed as soon as melt waters did
no longer reach the lake with the Early Holocene (McFarlin et al.,
2018; Axford et al., 2019). As already found by Bjorck et al. (2002)
for southern Greenland, it appears that summer temperatures
were high even during the YD in close vicinity to the Greenland ice
sheet as well as south of FIS (this study). The high Tjyy estimates for
stadial conditions of the pre-B@ and YD found here do also support
recent evidence for enhanced surface melting of FIS during stadial
cooling in the North Atlantic e.g. during Heinrich Stadial 1-3
(Toucanne et al., 2015; Boswell et al., 2019) or the Baltic Ice Lake
drainage at the onset of the YD stadial (Muschitiello et al., 2015b).

Based on high resolution climate model simulations, the high
summer temperatures south of FIS and over Eurasia can be
explained by atmospheric blocking of westerly winds by FIS during
summer (Schenk et al., 2018; Schenk and Vinuesa, 2019). According
to these simulations, the blocking is enhanced by an increasing
high-pressure ridge over the British Isles in response to strong
North Atlantic cooling during the YD (Schenk et al., 2018). The high
Tjuly directly south of FIS reconstructed from this study confirms
such a mechanism. The overall proxy-model evidence also lends
support to the proposed demise of Scotland’s last ice fields within
the YD stadial (Bromley et al., 2014, 2018), which the authors
attribute to warm stadial summers. There is, however, an ongoing
debate about the age estimates and time of disappearance of
Scotland’s last ice fields where a recent study by Lowe et al. (2019)
suggests a termination after the YD.

Although more accurate age estimates for ice sheets margins are
required, the evidence for high stadial July temperatures in this and
previous studies (e.g. Bjorck et al., 2002; Birks and Birks, 2014;
Schenk et al., 2018; Kobe et al., 2019) imply at least a high potential
for stadial ice melting in agreement with increased stadial sedi-
ment discharge through the British Channel (Toucanne et al., 2015;
Boswell et al., 2019). The extreme seasonality with very short sta-
dial warm seasons (Schenk et al.,, 2018) may however limit the
overall decrease in glacial mass balance independent from high
peak summer temperatures.

The continued and widespread presence of warm climate indi-
cator species during the YD is inconsistent with the July cooling
inferred from some chironomid studies (Heiri et al., 2014; Renssen
et al., 2015; Muschitiello, 2015; Wohlfarth, 2017, 2018). However,
recent studies show that chironomids infer considerably higher
stadial July temperatures of ~15 °C for the YD in agreement with
our climate indicator species (Fig. 6b) when chironomid re-
constructions are based on a continental rather than oceanic
training set (Ptociennik et al.,, 2011). This is consistent with the
multi-training set comparison of recent studies (Engels et al., 2014;
Plikk et al., 2019; Luoto et al., 2019; Kotrys et al., 2019) which show
that chironomids yield considerably higher temperatures when
they are inferred from continental training sets.

Because July temperatures are already high with up to ~16 °C
during AL and YD in our compilation, there is only a small addi-
tional warming for the onset of the Holocene in the PB. There is,
however, clear evidence that most sites now shift to indicator
species with high temperature requirements during the PB with an
abrupt decrease in the number of cold-adapted plants compared to
the YD (Fig. 4b). This could imply that site-specific factors became
less important possibly due to longer rather than warmer summers
with the onset of the Holocene.

There is, however, still a debate as to what extent the Preboreal
in the region had already reached full interglacial conditions since
the FIS was still present around 11 ka BP (Fig. 1) (Hughes et al.,
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2016). It has been hypothesized that the onset of warming in the
early Holocene was delayed by around one and a half millennia in
NW-Russia and the eastern Baltic region possibly due to continued
anticyclonic blocking of westerly winds over the retreating FIS
bringing cooler air with '80-depleted precipitation from the
Barents Sea (Subetto et al., 2008; Wohlfarth et al., 2002, 2007,
Lauterbach et al,, 2011). The continental rather than westerly
dominance of regional wind systems appears to have extended as
far west as southern Sweden as a similarly delayed '80-signal has
also been found in southern Sweden (Hammarlund et al., 2003) for
the early Holocene. Based on plant indicator species from the Ble-
kinge Province in SE-Sweden, T,y were unusually warm
throughout the Lateglacial and the Preboreal. It is hence likely that
the delayed 80-signal either reflects winter to spring precipitation
(thermal fractionation) or that the continued dominance of block-
ing with easterly winds advected generally more ®0-enriched
precipitation than westerly winds during summer (source region
effect).

The comparison of 15 sites within a region, as done here, pro-
vides additional useful information beyond focusing only on the
warmest indicator species. The widening of the species distribution
with a relative increase of cold-adapted heliophytes during stadials
coincides with a continued presence of warm indicator plants and
can be interpreted as a shift to an overall colder stadial climate but
with short warm summers. This is consistent with the hypothesis
(Denton et al., 2005) and climate modelling results (Schenk et al.,
2018) of increased seasonality and a shift to a more continental
climate during the YD, and possibly other stadials. The heteroge-
neous presence or absence of indicator plants during the YD at sites
within a small region could imply that site-specific factors play a
crucial role during extreme stadial climate states. Such a shift to a
continental climate with extreme seasonality with site-specific
heterogeneity could also explain recent evidence for divergent
constraints and debate on the (de-)glaciation of Scotland during the
YD: On the one hand, warm summers during the YD appear to have
triggered the demise of Scotland’s last ice fields within the YD
stadial (Bromley et al., 2014, 2018) while on the other hand spatially
restricted plateau ice fields may have re-emerged locally (Chandler
et al.,, 2019).

6. Conclusion

In the first part of this study, we extended the list of minimum
July temperature proxies based on climate indicator plant species
following the procedure of previous work (Valiranta et al., 2015;
Schenk et al., 2018). We define the minimum July temperature for a
given indicator species based on their common northern distribution
limit in Finland. As part of the update, we applied a strict selection
process and removed problematic indicator species that have no
clear distribution limit or that cannot be distinguished from other
species with different thermal requirements. In total, we provide
N = 62 different indicator species that cover a minimum July
temperature range from 11 °C to 16.7 °C with a median (mean)
potential warm bias of 0.6 °C (0.9 °C). Our covered temperature
gradient is comparable to the Finnish lake training set for chiron-
omids which covers 11.3—17.1 °C (Luoto et al., 2010, 2019). A strong
limitation of the indicator approach remains the scarcity of samples
typically found in sediment cores. There is, however, a strong po-
tential for future studies to make use of the definition of minimum
thermal limits to plant species identified by ancient DNA analysis of
lake sediments (Parducci et al., 2019) in addition to traditional plant
micro- or macrofossils.

In the second part of this study, we compiled and quantified
N = 96 climate indicator plant species from 15 sites that allowed us

to reconstruct minimum July temperatures in Denmark and S-
Sweden for ~15 to 11 ka BP. Although the number of sites and hence
indicator species is very low during the pre-Bd, B@ and OD, the
presence of indicator species with high thermal requirements such
as Herniaria glabra (Tyyy > 16.5 °C), Silene nutans (15.1 °C) or Alisma
plantago-aquatica (14.4 °C) at Bjorkerodsmosse and possibly Lotus
corniculatus (14.5 °C) at Slotseng, indicates near-modern July
temperatures even by ~15 ka BP in close vicinity to the FIS margin at
that time. We also find clear evidence for equally high July tem-
peratures during the YD stadial of at least ~14 °C and possibly up to
~16 °C consistent with high summer temperatures found in pre-
vious studies (e.g. Birks and Birks, 2014; Schenk et al., 2018).
Overall, our results of an surprisingly early emergence of high
Lateglacial summer temperatures together with high stadial sum-
mer temperatures underline the clear need to more thoroughly
analyse and discuss the problem of how extreme seasonality or
other parameters may affect various July proxy-reconstructions
differently during the last deglaciation and in particular during
stadial conditions. While climate simulations can provide strong
evidence for a shift to extreme seasonal changes and quantify
temperatures for long-lasting severe winters with a narrow win-
dow for short warm stadial summers (Schenk et al., 2018), the
simulation’s validity is dependent on a reliable quantification of
peak summer temperatures from proxy data. We suggest that
climate indicator plant species can play an important role in
identifying suitable training sets for chironomids and other proxies
during the Lateglacial regarding peak summer temperatures.
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