116 research outputs found

    Effects of ocean acidification on the dissolution rates of reef-coral skeletons

    Get PDF
    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m−2 y−1, which is approximately −10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050

    Phenotypic Variance Predicts Symbiont Population Densities in Corals: A Modeling Approach

    Get PDF
    We test whether the phenotypic variance of symbionts (Symbiodinium) in corals is closely related with the capacity of corals to acclimatize to increasing seawater temperatures. Moreover, we assess whether more specialist symbionts will increase within coral hosts under ocean warming. The present study is only applicable to those corals that naturally have the capacity to support more than one type of Symbiodinium within the lifetime of a colony; for example, Montastraea annularis and Montastraea faveolata.The population dynamics of competing Symbiodinium symbiont populations were projected through time in coral hosts using a novel, discrete time optimal-resource model. Models were run for two Atlantic Ocean localities. Four symbiont populations, with different environmental optima and phenotypic variances, were modeled to grow, divide, and compete in the corals under seasonal fluctuations in solar insolation and seawater temperature. Elevated seawater temperatures were input into the model 1.5 degrees C above the seasonal summer average, and the symbiont population response was observed for each location. The models showed dynamic fluctuations in Symbiodinium populations densities within corals. Population density predictions for Lee Stocking Island, the Bahamas, where temperatures were relatively homogenous throughout the year, showed a dominance of both type 2, with high phenotypic variance, and type 1, a high-temperature and high-insolation specialist. Whereas the densities of Symbiodinium types 3 and 4, a high-temperature, low-insolation specialist, and a high-temperature, low-insolation generalist, remained consistently low. Predictions for Key Largo, Florida, where environmental conditions were more seasonally variable, showed the coexistence of generalists (types 2 and 4) and low densities of specialists (types 1 and 3). When elevated temperatures were input into the model, population densities in corals at Lee Stocking Island showed an emergence of high-temperature specialists. However, even under high temperatures, corals in the Florida Keys were dominated by generalists.Predictions at higher seawater temperatures showed endogenous shuffling and an emergence of the high-temperature Symbiodinium specialists, even though their phenotypic variance was low. The model shows that sustaining these "hidden" specialists becomes advantageous under thermal stress conditions, and shuffling symbionts may increase the corals' capacity to acclimatize but not adapt to climatechange-induced ocean warming

    Predicting coral dynamics through climate change

    Get PDF
    Thermal-stress events are changing the composition of many coral reefs worldwide. Yet, determining the rates of coral recovery and their long-term responses to increasing sea-surface temperatures is challenging. To do so, we first estimated coral recovery rates following past disturbances on reefs in southern Japan and Western Australia. Recovery rates varied between regions, with the reefs in southern Japan showing more rapid recovery rates (intrinsic rate of increase, r = 0.38 year⁻¹) than reefs in Western Australia (r = 0.17 year⁻¹). Second, we input these recovery rates into a novel, nonlinear hybrid-stochastic-dynamical system to predict the responses of Indo-Pacific coral populations to complex inter-annual temperature cycles into the year 2100. The coral recovery rates were overlaid on background increases in global sea-surface temperatures, under three different climate-change scenarios. The models predicted rapid recovery at both localities with the infrequent and low-magnitude temperature anomalies expected under a conservative climate-change scenario, Representative Concentration Pathway (RCP) 4.5. With moderate increases in ocean temperatures (RCP 6.0) the coral populations showed a bimodal response, with model runs showing either recovery or collapse. Under a business-as-usual climate-change scenario (RCP 8.5), with frequent and intense temperature anomalies, coral recovery was unlikely

    Investigating Coral Bleaching in a Changing Climate: Our State of Understanding and Opportunities to Push the Field Forward

    Get PDF
    [First Paragraph] Coral reefs throughout the world are facing the consequences of large-scale changes in Earth’s climate. In particular, ocean warming is leading to frequent coral bleaching, which is threatening the long-term stability of coral reefs. Coral bleaching is a stress response that results in the disassociation of the mutualistic symbioses (i.e., dysbiosis) between corals and their endosymbiotic algae (Symbiodinium spp.). In the past two decades, there have been four substantial bleaching events, which have affected large geographic areas across the globe, including the worst recorded bleaching event on the Great Barrier Reef in 2016 (Berkelmans et al. 2004; Eakin et al. 2010; Stella et al. 2016). These large-scale bleaching events, in combination with many local-scale stressors, have contributed substantially to global declines in coral populations. In addition, bleaching may lead to compromised coral immunity, possibly resulting in additional mortality by a range of post-bleaching diseases (Maynard et al. 2015, Randall et al. 2014). Given their link to patterns of global-climate change and projections of increased warming in the coming decades, mass coral bleaching events are a key concern. In addition, current climate projections estimate that global bleaching is expected to occur annually by late this century, with more than 90% of reefs facing long-term degradation (Frieler et al. 2012). Furthermore, in locations such as the Caribbean, frequent thermal anomalies and consecutive annual bleaching events are expected to be common in less than 25 years (van Hooidonk et al. 2015). In fact, large-scale bleaching two years in a row was documented for the first time in 2014-2015 in Hawaii and in the Florida Keys. However, not all corals (and other symbiotic cnidarians) are equally susceptible to thermal stress, and some corals have been shown to recover from bleaching more quickly than others. Likewise, not all reefs are equally susceptible, and depending on local conditions, susceptibility can vary from one event to the next. Such variability in resilience could be a cornerstone to reef persistence over the coming century. However, the research needed to test this hypothesis remains to be performed

    BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction

    Get PDF
    We describe the Bayesian user-friendly model for palaeo-environmental reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring ~2 s to build a 100-taxon model from a 100-site training set on a standard personal computer. We apply the model’s probabilistic framework to generate thousands of artificial training sets under ideal assumptions.We then use these to demonstrate the sensitivity of reconstructions to the characteristics of the training set, considering assemblage richness, taxon tolerances, and the number of training sites. We find that a useful guideline for the size of a training set is to provide, on average, at least 10 samples of each taxon. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. An identically configured model is used in each application, the only change being the input files that provide the training-set environment and taxon-count data. The performance of BUMPER is shown to be comparable with weighted average partial least squares (WAPLS) in each case. Additional artificial datasets are constructed with similar characteristics to the real data, and these are used to explore the reasons for the differing performances of the different training sets

    On the dynamics of the Zanzibar Channel

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6091–6113, doi:10.1002/2015JC010879.The Zanzibar Channel lies between the mainland of Tanzania and Zanzibar Island in the tropical western Indian Ocean, is about 100 km long, 40 km wide, and 40 m deep, and is essential to local socioeconomic activities. This paper presents a model of the seasonal and tidal dynamics of the Zanzibar Channel based on the Regional Ocean Modeling System (ROMS) and a comparison of the model and observations. The seasonal dynamics of the channel is forced by remote processes and the local wind. Remote forcing creates the East African Coastal Current, a portion of which flows through the channel northward with a seasonally varying magnitude. The local wind enhances this seasonality in the surface Ekman layer, resulting in a stronger northward flow during the southwest monsoon season and a weak northward or occasionally southward flow during the northeast monsoon season. The tidal flows converge and diverge in the center of the channel and reduce the transport in the channel. The remotely forced, wind-forced, and tidal dynamics contain 5%, 3%, and 92% of the total kinetic energy, respectively. Despite their low kinetic energy, the remotely forced and wind-forced flows are most relevant in advecting channel water to the open ocean, which occurs in 19 days at the peak of the southwest monsoon season. The channel is well mixed, except during brief periods in the two rainy seasons, and temporarily cools between December and February. The dispersion of passive tracers is presented as an example of potential model applications.National Science Foundation Grant Numbers: OISE-0827059 , OCE-0550658 , OCE-0851493 , OCE-09274722016-03-1

    Diversity Partitioning of Stony Corals Across Multiple Spatial Scales Around Zanzibar Island, Tanzania

    Get PDF
    The coral reefs of Zanzibar Island (Unguja, Tanzania) encompass a considerable proportion of the global coral-reef diversity and are representative of the western Indian Ocean region. Unfortunately, these reefs have been recently subjected to local and regional disturbances. The objectives of this study were to determine whether there are potentially non-random processes forcing the observed coral diversity patterns, and highlight where and at which spatial scales these processes might be most influential.A hierarchical (nested) sampling design was employed across three spatial scales, ranging from transects (<or=20 m), stations (<100 m), to sites (<1000 m), to examine coral diversity patterns. Two of the four sites, Chumbe and Mnemba, were located within Marine Protected Areas (MPAs), while the other two sites, Changuu and Bawe, were not protected. Additive partitioning of coral diversity was used to separate regional (total) diversity (gamma) into local alpha diversity and among-sample beta diversity components. Individual-based null models were used to identify deviations from random distribution across the three spatial scales. We found that Chumbe and Mnemba had similar diversity components to those predicted by the null models. However, the diversity at Changuu and Bawe was lower than expected at all three spatial scales tested. Consequently, the relative contribution of the among-site diversity component was significantly greater than expected. Applying partitioning analysis for each site separately revealed that the within-transect diversity component in Changuu was significantly lower than the null expectation.The non-random outcome of the partitioning analyses helped to identify the among-sites scale (i.e., 10's of kilometers) and the within-transects scale (i.e., a few meters; especially at Changuu) as spatial boundaries within which to examine the processes that may interact and disproportionately differentiate coral diversity. In light of coral community compositions and diversity patterns we strongly recommend that Bawe be declared a MPA

    No barrier to emergence of bathyal king crabs on the Antarctic shelf

    Get PDF
    Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010‒2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∼4.5 individuals × 1,000 m(−2) within a depth range of 1,100‒1,500 m (overall observed depth range 841–2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (<200 m). Ambient salinity, composition of the substrate, and the depth distribution of potential predators likewise indicated no barriers to expansion of lithodids onto the outer shelf. Primary food resources for lithodids—echinoderms and mollusks—were abundant on the upper slope (550–800 m) and outer shelf. As sea temperatures continue to rise, lithodids will likely play an increasingly important role in the trophic structure of subtidal communities closer to shore

    Unified Methods in Collecting, Preserving, and Archiving Coral Bleaching and Restoration Specimens to Increase Sample Utility and Interdisciplinary Collaboration

    Get PDF
    Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses

    Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    Get PDF
    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching
    corecore