89 research outputs found

    Report of Second Meeting for the Purpose of Obtaining the Views of the Three Affiliated Tribes of the Fort Berthold Reservation on the Lieu Lands Offered by the Secretary of War, 1946

    Get PDF
    Report of the second meeting held in the office of Assistant Secretary of the Interior C. Girard Davidson for the purpose of obtaining the views of the Three Affiliated Tribes of the Fort Berthold Reservation of the lieu lands offered by the Secretary of War. Includes a list of attendees and a transcript of the meeting discussing the Three Affiliated Tribes\u27 rejection of the offer of lieu lands made by the Secretary of Interior and Department of War to the Fort Berthold Reservation. See also: Report of Meeting for the Purpose of Obtaining the Views of the Three Affiliated Tribes of the Fort Berthold Reservation on the Lieu Lands Offered by the Secretary of War, 1946https://commons.und.edu/langer-papers/1147/thumbnail.jp

    Processive Movement by a Kinesin Heterodimer with an Inactivating Mutation in One Head†

    Get PDF
    ABSTRACT: A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (>50 % of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other

    Diffusion of Myosin V on Microtubules: A Fine-Tuned Interaction for Which E-Hooks Are Dispensable

    Get PDF
    Organelle transport in eukaryotes employs both microtubule and actin tracks to deliver cargo effectively to their destinations, but the question of how the two systems cooperate is still largely unanswered. Recently, in vitro studies revealed that the actin-based processive motor myosin V also binds to, and diffuses along microtubules. This biophysical trick enables cells to exploit both tracks for the same transport process without switching motors. The detailed mechanisms underlying this behavior remain to be solved. By means of single molecule Total Internal Reflection Microscopy (TIRFM), we show here that electrostatic tethering between the positively charged loop 2 and the negatively charged C-terminal E-hooks of microtubules is dispensable. Furthermore, our data indicate that in addition to charge-charge interactions, other interaction forces such as non-ionic attraction might account for myosin V diffusion. These findings provide evidence for a novel way of myosin tethering to microtubules that does not interfere with other E-hook-dependent processes

    Structure-Function Relations in Oxaloacetate Decarboxylase Complex. Fluorescence and Infrared Approaches to Monitor Oxomalonate and Na+ Binding Effect

    Get PDF
    ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site. characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements

    Analysis of Salmonella enterica Serotype Paratyphi A Gene Expression in the Blood of Bacteremic Patients in Bangladesh

    Get PDF
    Salmonella enterica serotype Paratyphi A is a significant and emerging global public health problem and accounts for one fifth of all cases of enteric fever in many areas of Asia. S. Paratyphi A only infects humans, and the lack of an appropriate animal model has limited the study of S. Paratyphi A infection. In this study, we report the application of an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), to evaluate which S. Paratyphi A genes are expressed directly in the blood of infected humans. Our results provide insight into the bacterial adaptations and modifications that S. Paratyphi A may need to survive within infected humans and suggest that similar approaches may be applied to other pathogens in infected humans and animals

    Back on track – On the role of the microtubule for kinesin motility and cellular function

    Full text link
    The evolution of cytoskeletal filaments (actin- and intermediate-filaments, and the microtubules) and their associated motor- and non-motor-proteins has enabled the eukaryotic cell to achieve complex organizational and structural tasks. This ability to control cellular transport processes and structures allowed for the development of such complex cellular organelles like cilia or flagella in single-cell organisms and made possible the development and differentiation of multi-cellular organisms with highly specialized, polarized cells. Also, the faithful segregation of large amounts of genetic information during cell division relies crucially on the reorganization and control of the cytoskeleton, making the cytoskeleton a key prerequisite for the development of highly complex genomes. Therefore, it is not surprising that the eukaryotic cell continuously invests considerable resources in the establishment, maintenance, modification and rearrangement of the cytoskeletal filaments and the regulation of its interaction with accessory proteins. Here we review the literature on the interaction between microtubules and motor-proteins of the kinesin-family. Our particular interest is the role of the microtubule in the regulation of kinesin motility and cellular function. After an introduction of the kinesin–microtubule interaction we focus on two interrelated aspects: (1) the active allosteric participation of the microtubule during the interaction with kinesins in general and (2) the possible regulatory role of post-translational modifications of the microtubule in the kinesin–microtubule interaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42588/1/10974_2005_Article_9052.pd

    Salmonella bongori provides insights into the evolution of the Salmonellae.

    Get PDF
    The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.We thank the core sequencing and informatics teams at the Sanger Institute for their assistance and The Wellcome Trust for its support of the Sanger Institute Pathogen Genomics and Biology groups and the MRC for their support of GF, KSR and GNS. MCF, GCL, TRC, HSS, GSV, MS, NKP, RAK, JP, GD and NRT were supported by Wellcome Trust grant 076964 and MICROME, an EU Framework Programme 7 Collaborative Project, Grant Agreement Number 222886-2. Work was also supported by Grant ADI-08/2006 from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) and The World Bank, and grant 1100092 from Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT). CJB was supported by fellowships from CONICYT (21080373 and AT-24091015)

    Switching on kinesin

    No full text

    Importance of a flexible hinge near the motor domain in kinesin-driven motility.

    No full text
    Conventional kinesin is a molecular motor consisting of an N-terminal catalytic motor domain, an extended stalk and a small globular C-terminus. Whereas the structure and function of the catalytic motor domain has been investigated, little is known about the function of domains outside the globular head. A short coiled-coil region adjacent to the motor domain, termed the neck, is known to be important for dimerization and may be required for kinesin processivity. We now provide evidence that a helix-disrupting hinge region (hinge 1) that separates the neck from the first extended coiled-coil of the stalk plays an essential role in basic motor activity. A fast fungal kinesin from Syncephalastrum racemosum was used for these studies. Deletion, substitution by a coiled-coil and truncation of the hinge 1 region all reduce motor speed and uncouple ATP turnover from gliding velocity. Insertion of hinge 1 regions from two conventional kinesins, Nkin and DmKHC, fully restores motor activity, whereas insertion of putative flexible linkers of other proteins does not, suggesting that hinge 1 regions of conventional kinesins can functionally replace each other. We suggest that this region is essential for kinesin movement in its promotion of chemo-mechanical coupling of the two heads and therefore the functional motor domain should be redefined to include not only the catalytic head but also the adjacent neck and hinge 1 domains
    corecore