24 research outputs found
Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology
The identification of molecular subtype heterogeneity in breast cancer has allowed a deeper understanding of breast cancer biology. We present evidence that there are two intrinsic subtypes of high-grade bladder cancer, basal-like and luminal, which reflect the hallmarks of breast biology. Moreover, we have developed an accurate gene set predictor of molecular subtype, the BASE47, that should allow the incorporation of subtype stratification into clinical trials. Further clinical, etiologic, and therapeutic response associations will be of interest in future investigations
Poor prognosis among radiation associated bladder cancer is defined by clinicogenomic features
Radiation therapy (RT) for prostate cancer has been associated with an increased risk for the development of bladder cancer. We aimed to integrate clinical and genomic data to better understand the development of RT-associated bladder cancer. A retrospective analysis was performed to identify control (CTRL; n= 41) and RT-associated (n=41) bladder cancer patients. RT and CTRL specific features were then identified through integration and analysis of the genomic sequencing data and clinical variables. RT-associated bladder tumors were significantly enriched for alterations in KDM6A and ATM, while CTRL tumors were enriched for CDKN2A mutation. Globally, there was an increased number of variants within RT tumors, albeit at a lower variant allele frequency. Mutational signature analysis revealed three predominate motif patterns, with similarity to SBS2/13 (APOBEC3A), SBS5 (ERCC2/Smoking) and SBS6/15 (MMR). Poor prognostic factors in the RT cohort include, a short tumor latency, smoking status, the presence of the smoking and XRT mutational signatures, and CDKN2A copy number loss. Based on the clinical and genomic findings, we suggest, at least two potential pathways leading to RT-associated bladder cancer; the first, occurs in the setting of field cancerization, related to smoking or pre-existing genetic alterations and leads to the development of more aggressive bladder tumors, and the second, in which RT initiates the oncogenic process in otherwise healthy urothelium, leading to a longer latency and less aggressive disease
Visual Intratumor Heterogeneity and Breast Tumor Progression
High intratumoral heterogeneity is thought to be a poor prognostic indicator. However, the source of heterogeneity may also be important, as genomic heterogeneity is not always reflected in histologic or ‘visual’ heterogeneity. We aimed to develop a predictor of histologic heterogeneity and evaluate its association with outcomes and molecular heterogeneity. We used VGG16 to train an image classifier to identify unique, patient-specific visual features in 1655 breast tumors (5907 core images) from the Carolina Breast Cancer Study (CBCS). Extracted features for images, as well as the epithelial and stromal image components, were hierarchically clustered, and visual heterogeneity was defined as a greater distance between images from the same patient. We assessed the association between visual heterogeneity, clinical features, and DNA-based molecular heterogeneity using generalized linear models, and we used Cox models to estimate the association between visual heterogeneity and tumor recurrence. Basal-like and ER-negative tumors were more likely to have low visual heterogeneity, as were the tumors from younger and Black women. Less heterogeneous tumors had a higher risk of recurrence (hazard ratio = 1.62, 95% confidence interval = 1.22–2.16), and were more likely to come from patients whose tumors were comprised of only one subclone or had a TP53 mutation. Associations were similar regardless of whether the image was based on stroma, epithelium, or both. Histologic heterogeneity adds complementary information to commonly used molecular indicators, with low heterogeneity predicting worse outcomes. Future work integrating multiple sources of heterogeneity may provide a more comprehensive understanding of tumor progression
MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma
Renal carcinoma is a common and aggressive malignancy whose histopathogenesis is incompletely understood and that is largely resistant to cytotoxic chemotherapy. We present two mouse models of kidney cancer that recapitulate the genomic alterations found in human papillary (pRCC) and clear cell RCC (ccRCC), the most common RCC subtypes. MYC activation results in highly penetrant pRCC tumours (MYC), while MYC activation, when combined with Vhl and Cdkn2a (Ink4a/Arf) deletion (VIM), produce kidney tumours that approximate human ccRCC. RNAseq of the mouse tumours demonstrate that MYC tumours resemble Type 2 pRCC, which are known to harbour MYC activation. Furthermore, VIM tumours more closely simulate human ccRCC. Based on their high penetrance, short latency, and histologic fidelity, these models of papillary and clear cell RCC should be significant contributions to the field of kidney cancer research
Going Bone Deep: Osseous Rosai–Dorfman Disease in an Adult with Recurrent, Culture-Negative Osteomyelitis
A patient presented for medical care on three separate occasions over the course of two years with recurrent right knee pain attributed to chronic osteomyelitis. Careful assessment revealed that his symptoms were caused by osseous Rosai–Dorfman disease. This case presents an alternative diagnostic possibility for culture-negative chronic osteomyelitis
Development and validation of a NanoString BASE47 bladder cancer gene classifier.
BackgroundRecent molecular characterization of urothelial cancer (UC) has suggested potential pathways in which to direct treatment, leading to a host of targeted therapies in development for UC. In parallel, gene expression profiling has demonstrated that high-grade UC is a heterogeneous disease. Prognostic basal-like and luminal-like subtypes have been identified and an accurate transcriptome BASE47 classifier has been developed. However, these phenotypes cannot be broadly investigated due to the lack of a clinically viable diagnostic assay. We sought to develop and evaluate a diagnostic classifier of UC subtype with the goal of accurate classification from clinically available specimens.MethodsTumor samples from 52 patients with high-grade UC were profiled for BASE47 genes concurrently by RNAseq as well as NanoString. After design and technical validation of a BASE47 NanoString probeset, results from the RNAseq and NanoString were used to translate diagnostic criteria to the Nanostring platform. Evaluation of repeatability and accuracy was performed to derive a final Nanostring based classifier. Diagnostic classification resulting from the NanoString BASE47 classifier was validated on an independent dataset (n = 30). The training and validation datasets accurately classified 87% and 93% of samples, respectively.ResultsHere we have derived a NanoString-platform BASE47 classifier that accurately predicts basal-like and luminal-like subtypes in high grade urothelial cancer. We have further validated our new NanoString BASE47 classifier on an independent dataset and confirmed high accuracy when compared with our original Transcriptome BASE47 classifier.ConclusionsThe NanoString BASE47 classifier provides a faster turnaround time, a lower cost per sample to process, and maintains the accuracy of the original subtype classifier for better clinical implementation
Inflammatory myofibroblastic tumor in a patient with X-Linked hypophosphatemia: A case of Occam's razor or Hickam's dictum?
We present the case of a patient with X-Linked Hypophosphatemia (XLH) and an inflammatory myofibroblastic tumor (IMT) of the bladder which prompted further investigation into the possible relationship between XLH and IMT i.e. a case of Occam's Razor or Hickam's Dictum
A coupled thermal-mechanical analysis of a mould-billet system during continuous casting
The three-dimensional (3-D) thermal-mechanical behavior of a mold-billet system under actual casting conditions is investigated with an FE approach, taking into account the main influencing factors, such as solidification heat, latent heat released during phase transformation, heat transfer, as well as the interaction between the moving billet and the mold. It is based on the coupled thermal-mechanical analysis for the whole mold-billet system, instead of analyzing the thermal-mechanical behavior of the mold and the billet individually, as is often used in practice. Comparison shows that the former approach can provide satisfactory results without making use of the empirical estimation of the heat flux through the inboard surface of the mold based on the difference between the temperature of inlet and outlet cooling water at steady-state and the temperature distribution near the surface of the inboard plate measured experimentally, which are usually necessarily required for the latter approach to be applied in practice
Molecular Subtype-Specific Immunocompetent Models of High-Grade Urothelial Carcinoma Reveal Differential Neoantigen Expression and Response to Immunotherapy
High-grade urothelial cancer contains intrinsic molecular subtypes that exhibit differences in underlying tumor biology and can be divided into luminal-like and basal-like subtypes. We describe here the first subtype-specific murine models of bladder cancer and show that Upk3a-CreERT2; Trp53L/L; PtenL/L; Rosa26LSL-Luc (UPPL, luminal-like) and BBN (basal-like) tumors are more faithful to human bladder cancer than the widely used MB49 cells. Following engraftment into immunocompetent C57BL/6 mice, BBN tumors were more responsive to PD-1 inhibition than UPPL tumors. Responding tumors within the BBN model showed differences in immune microenvironment composition, including increased ratios of CD8+:CD4+ and memory:regulatory T cells. Finally, we predicted and confirmed immunogenicity of tumor neoantigens in each model. These UPPL and BBN models will be a valuable resource for future studies examining bladder cancer biology and immunotherapy.Significance: This work establishes human-relevant mouse models of bladder cancer
Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology
We sought to define whether there are intrinsic molecular subtypes of high-grade bladder cancer. Consensus clustering performed on gene expression data from a meta-dataset of high-grade, muscle-invasive bladder tumors identified two intrinsic, molecular subsets of high-grade bladder cancer, termed “luminal” and “basal-like,” which have characteristics of different stages of urothelial differentiation, reflect the luminal and basal-like molecular subtypes of breast cancer, and have clinically meaningful differences in outcome. A gene set predictor, bladder cancer analysis of subtypes by gene expression (BASE47) was defined by prediction analysis of microarrays (PAM) and accurately classifies the subtypes. Our data demonstrate that there are at least two molecularly and clinically distinct subtypes of high-grade bladder cancer and validate the BASE47 as a subtype predictor. Future studies exploring the predictive value of the BASE47 subtypes for standard of care bladder cancer therapies, as well as novel subtype-specific therapies, will be of interest