978 research outputs found

    A new code for parameter estimation in searches for gravitational waves from known pulsars

    Get PDF
    We describe the consistency testing of a new code for gravitational wave signal parameter estimation in known pulsar searches. The code uses an implementation of nested sampling to explore the likelihood volume. Using fake signals and simulated noise we compare this to a previous code that calculated the signal parameter posterior distributions on both a grid and using a crude Markov chain Monte Carlo (MCMC) method. We define a new parameterisation of two orientation angles of neutron stars used in the signal model (the initial phase and polarisation angle), which breaks a degeneracy between them and allows more efficient exploration of those parameters. Finally, we briefly describe potential areas for further study and the uses of this code in the future.Comment: Accepted for proceedings of Amaldi 9 meetin

    An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches

    Full text link
    We review and expand on a Bayesian model selection technique for the detection of gravitational waves from neutron star ring-downs associated with pulsar glitches. The algorithm works with power spectral densities constructed from overlapping time segments of gravitational wave data. Consequently, the original approach was at risk of falsely identifying multiple signals where only one signal was present in the data. We introduce an extension to the algorithm which uses posterior information on the frequency content of detected signals to cluster events together. The requirement that we have just one detection per signal is now met with the additional bonus that the belief in the presence of a signal is boosted by incorporating information from adjacent time segments.Comment: 6 pages, 4 figures, submitted to AMALDI 7 proceeding

    Robust Bayesian detection of unmodelled bursts

    Get PDF
    A Bayesian treatment of the problem of detecting an unmodelled gravitational wave burst with a global network of gravitational wave observatories reveals that several previously proposed statistics have implicit biases that render them sub-optimal for realistic signal populations.Comment: 9 pages, 1 figure, submitted to CQG Amaldi proceedings special issu

    Optimal time-domain combination of the two calibrated output quadratures of GEO 600

    Get PDF
    GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods

    Current status of gravitational-wave observations

    Full text link
    The first generation of gravitational wave interferometric detectors has taken data at, or close to, their design sensitivity. This data has been searched for a broad range of gravitational wave signatures. An overview of gravitational wave search methods and results are presented. Searches for gravitational waves from unmodelled burst sources, compact binary coalescences, continuous wave sources and stochastic backgrounds are discussed.Comment: 21 pages, LaTeX, uses svjour3.cls, 1 figure, for GRG special issue on Einstein Telescop

    Upper Limits On Periodic, Pulsed Radio Emission from the X-Ray Point Source in Cassiopeia A

    Get PDF
    The Chandra X-ray Observatory recently discovered an X-ray point source near the center of Cassiopeia A, the youngest known Galactic supernova remnant. We have conducted a sensitive search for radio pulsations from this source with the Very Large Array, taking advantage of the high angular resolution of the array to resolve out the emission from the remnant itself. No convincing signatures of a dispersed, periodic source or of isolated dispersed pulses were found, whether for an isolated or a binary source. We derive upper limits of 30 and 1.3 mJy at 327 and 1435 MHz for the phase-averaged pulsed flux density from this source. The corresponding luminosity limits are lower than those for any pulsar with age less than 10^4 years. The sensitivities of our search to single pulses were 25 and 1.0 Jy at 327 and 1435 MHz. For comparison, the Crab pulsar emits roughly 80 pulses per minute with flux densities greater than 100 Jy at 327 MHz and 8 pulses per minute with flux densities greater than 50 Jy at 1435 MHz. These limits are consistent with the suggestion that the X-ray point source in Cas A adds to the growing number of neutron stars which are not radio pulsars.Comment: accepted by ApJ Letter
    corecore