9 research outputs found

    Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood

    Get PDF
    Obesity has become a major epidemic in the 21st century. It increases the risk of dyslipidemia, hypertension, and type 2 diabetes, which are known cardiometabolic risk factors and components of the metabolic syndrome. Although overt cardiovascular (CV) diseases such as stroke or myocardial infarction are the domain of adulthood, it is evident that the CV continuum begins very early in life. Recognition of risk factors and early stages of CV damage, at a time when these processes are still reversible, and the development of prevention strategies are major pillars in reducing CV morbidity and mortality in the general population. In this review, we will discuss the role of well-known but also novel risk factors linking obesity and increased CV risk from prenatal age to adulthood, including the role of perinatal factors, diet, nutrigenomics, and nutri-epigenetics, hyperuricemia, dyslipidemia, hypertension, and cardiorespiratory fitness. The importance of 'tracking' of these risk factors on adult CV health is highlighted and the economic impact of childhood obesity as well as preventive strategies are discussed

    Psychosocial and environmental risk factors of obesity and hypertension in children and adolescents—a literature overview

    Get PDF
    Childhood obesity has become a worldwide epidemic in the 21st century. Its treatment is challenging and often ineffective, among others due to complex, often not obvious causes. Awareness of the existence and meaning of psychosocial and environmental risk factors seems to be an essential element in the prevention and treatment of obesity and its complications, especially arterial hypertension. In this review, we will discuss the role of that risk factors linking obesity and increased cardiovascular disorders including the role of nutritional factors (including the role of unhealthy diet, inadequate hydration), unhealthy behaviors (e.g. smoking, alcohol and drugs, sedentary behavior, low physical activity, disrupted circadian rhythms, sleep disorders, screen exposure), unfavorable social factors (such as dysfunctional family, bullying, chronic stress, mood disorders, depression, urbanization, noise, and environmental pollution), and finally differences in cardiovascular risk in girls and boy

    Mechanism of Benzylic Hydroxylation by 4‑Hydroxymandelate Synthase. A Computational Study

    No full text
    Hydroxymandelate synthase (HMS) and 4-hydroxyphenylpyruvate dioxygenase (HPPD) are highly related enzymes using the same substrates but catalyzing hydroxylation reactions yielding different products. The first steps of the HMS and HPPD catalytic reactions are believed to proceed in the same way and lead to an Fe­(IV)O–hydroxyphenylacetate (HPA) intermediate. Further down the catalytic cycles, HMS uses Fe­(IV)O to perform hydroxylation of the benzylic carbon, whereas in HPPD, the reactive oxoferryl intermediate attacks the aromatic ring of HPA. This study focuses on this part of the HMS catalytic cycle that starts from the oxoferryl intermediate and aims to identify interactions within the active site that are responsible for enzyme specificity. To this end, a HMS–Fe­(IV)O–HPA complex was modeled with molecular dynamics simulations. On the basis of the molecular dynamics-equilibrated structure, an active site model suitable for quantum chemical investigations was constructed and used for density functional theory (B3LYP) calculations of the mechanism of the native reaction of HMS, i.e., benzylic hydroxylation, and the alternative electrophilic attack on the ring, which is a step of the HPPD catalytic cycle. The most important result of this study is the finding that the conformation of the Ser201 side chain in the second coordination shell has a key role in directing the reaction of Fe­(IV)O into either the HMS or the HPPD channel

    Mechanism of Benzylic Hydroxylation by 4‑Hydroxymandelate Synthase. A Computational Study

    No full text
    Hydroxymandelate synthase (HMS) and 4-hydroxyphenylpyruvate dioxygenase (HPPD) are highly related enzymes using the same substrates but catalyzing hydroxylation reactions yielding different products. The first steps of the HMS and HPPD catalytic reactions are believed to proceed in the same way and lead to an Fe­(IV)O–hydroxyphenylacetate (HPA) intermediate. Further down the catalytic cycles, HMS uses Fe­(IV)O to perform hydroxylation of the benzylic carbon, whereas in HPPD, the reactive oxoferryl intermediate attacks the aromatic ring of HPA. This study focuses on this part of the HMS catalytic cycle that starts from the oxoferryl intermediate and aims to identify interactions within the active site that are responsible for enzyme specificity. To this end, a HMS–Fe­(IV)O–HPA complex was modeled with molecular dynamics simulations. On the basis of the molecular dynamics-equilibrated structure, an active site model suitable for quantum chemical investigations was constructed and used for density functional theory (B3LYP) calculations of the mechanism of the native reaction of HMS, i.e., benzylic hydroxylation, and the alternative electrophilic attack on the ring, which is a step of the HPPD catalytic cycle. The most important result of this study is the finding that the conformation of the Ser201 side chain in the second coordination shell has a key role in directing the reaction of Fe­(IV)O into either the HMS or the HPPD channel

    Role of Substrate Positioning in the Catalytic Reaction of 4‑Hydroxyphenylpyruvate DioxygenaseA QM/MM Study

    No full text
    Ring hydroxylation and coupled rearrangement reactions catalyzed by 4-hydroxy­phenyl­pyruvate dioxygenase were studied with the QM/MM method ONIOM­(B3LYP:AMBER). For electrophilic attack of the ferryl species on the aromatic ring, five channels were considered: attacks on the three ring atoms closest to the oxo ligand (C1, C2, C6) and insertion of oxygen across two bonds formed by them (C1–C2, C1–C6). For the subsequent migration of the carboxymethyl substituent, two possible directions were tested (C1→C2, C1→C6), and two different mechanisms were sought (stepwise radical, single-step heterolytic). In addition, formation of an epoxide (side)­product and benzylic hydroxylation, as catalyzed by the closely related hydroxymandelate synthase, were investigated. From the computed reaction free energy profiles it follows that the most likely mechanism of 4-hydroxyphenylpyruvate dioxygenase involves electrophilic attack on the C1 carbon of the ring and subsequent single-step heterolytic migration of the substituent. Computed values of the kinetic isotope effect for this step are inverse, consistent with available experimental data. Electronic structure arguments for the preferred mechanism of attack on the ring are also presented

    Dithizone Modified Gold Nanoparticles Films for Potentiometric Sensing

    No full text
    For the first time, application of a membrane composed of gold nanoparticles decorated with complexing ligand for potentiometric sensing is shown. Gold nanoparticles drop cast from a solution form a porous structure on a substrate electrode surface. Sample cations can penetrate the gold nanoparticles layer and interact with ligand acting as a charged ionophore, resulting in Nernstian potentiometric responses. Anchoring of complexing ligand on the gold surface abolishes the necessity of ionophore application. Moreover, it opens the possibility of preparation of potentiometric sensors using chelators of significantly different selectivity patterns further enhanced by the absence of polymeric membrane matrix. This was clearly seen, for example, for gold nanoparticles stabilizing the applied ligand–dithizone–thiol conformation leading to a high potentiometric selectivity toward copper ions, much higher than that of ionophores typically used to induce selectivity for polymeric ion-selective membranes

    Spin-Resolved Magneto-Tunneling and Giant Anisotropic g-Factor in Broken Gap InAs-GaSb Core-Shell Nanowires

    No full text
    : We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core-shell nanowires under a magnetic field, B, up to 30 T and at temperatures in the range 4.2-200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing B. The doublet accounts for spin-polarized currents through the Zeeman split channels of the InAs (GaSb) conduction (valence) band and exhibits strong anisotropy with respect to B orientation and marked temperature dependence. Envelope function approximation and a semiclassical (WKB) approach allow to compute the magnetic quantum states of InAs and GaSb sections of the nanowire and to estimate the B-dependent tunneling current across the broken-gap interface. Disentangling different magneto-transport channels and a thermally activated valence-to-valence band transport current, we extract the g-factor from the spin-up and spin-down dI/dV branch dispersion, revealing a giant, strongly anisotropic g-factor in excess of 60 (100) for the radial (tilted) field configurations

    The Gallium solar neutrino experiment at Gran Sasso

    No full text
    We present here the status of the radiochemical Gallex experiment in the underground Laboratori Nazionali del Gran Sasso. This experiment will contribute to probe the theory of stellar structure and neutrino masses using 30 tons of natural gallium to detect pp-solar neutrinos. The first full scale run is expected in june 1990

    Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver

    No full text
    corecore