146 research outputs found

    Replication-incompetent influenza A viruses armed with IFN-Ī³ effectively mediate immune modulation and tumor destruction in mice harboring lung cancer

    Get PDF
    Low pathogenic influenza A viruses (IAVs) have shown promising oncolytic potential in lung cancer-bearing mice. However, as replication-competent pathogens, they may cause side effects in immunocompromised cancer patients. To circumvent this problem, we genetically engineered nonreplicating IAVs lacking the hemagglutinin (HA) gene (Ī”HA IAVs), but reconstituted the viral envelope with recombinant HA proteins to allow a single infection cycle. To optimize the therapeutic potential and improve immunomodulatory properties, these replication-incompetent IAVs were complemented with a murine interferon-gamma (mIFN-Ī³) gene. After intratracheal administration to transgenic mice that develop non-small cell lung cancer (NSCLC), the Ī”HA IAVs induced potent tumor destruction. However, Ī”HA IAVs armed with mIFN-Ī³ exhibited an even stronger and more sustained effect, achieving 85% tumor reduction at day 12 postinfection. In addition, Ī”HA-mIFN-Ī³ viruses were proven to be efficient in recruiting and activating natural killer cells and macrophages from the periphery and in inducing cytotoxic T lymphocytes. Most important, both viruses, and particularly IFN-Ī³-encoding viruses, activated tumor-associated alveolar macrophages toward a proinflammatory M1-like phenotype. Therefore, replication-incompetent Ī”HA-mIFN-Ī³-IAVs are safe and efficient oncolytic viruses that additionally exhibit immune cell activating properties and thus represent a promising innovative therapeutic option in the fight against NSCLC

    The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induces fibrosis

    Full text link
    Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2) is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages

    The LIM-only protein FHL2 interacts with Ī²-catenin and promotes differentiation of mouse myoblasts

    Get PDF
    FHL2 is a LIM-domain protein expressed in myoblasts but down-regulated in malignant rhabdomyosarcoma cells, suggesting an important role of FHL2 in muscle development. To investigate the importance of FHL2 during myoblast differentiation, we performed a yeast two-hybrid screen using a cDNA library derived from myoblasts induced for differentiation. We identified Ī²-catenin as a novel interaction partner of FHL2 and confirmed the specificity of association by direct in vitro binding tests and coimmunoprecipitation assays from cell lysates. Deletion analysis of both proteins revealed that the NH2-terminal part of Ī²-catenin is sufficient for binding in yeast, but addition of the first armadillo repeat is necessary for binding FHL2 in mammalian cells, whereas the presence of all four LIM domains of FHL2 is needed for the interaction. Expression of FHL2 counteracts Ī²-cateninā€“mediated activation of a TCF/LEF-dependent reporter gene in a dose-dependent and muscle cellā€“specific manner. After injection into Xenopus embryos, FHL2 inhibited the Ī²-cateninā€“induced axis duplication. C2C12 mouse myoblasts stably expressing FHL2 show increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. These data imply that FHL2 is a muscle-specific repressor of LEF/TCF target genes and promotes myogenic differentiation by interacting with Ī²-catenin

    Deficiency in the LIM-only protein Fhl2 impairs skin wound healing

    Get PDF
    After skin wounding, the repair process is initiated by the release of growth factors, cytokines, and bioactive lipids from injured vessels and coagulated platelets. These signal molecules induce synthesis and deposition of a provisional extracellular matrix, as well as fibroblast invasion into and contraction of the wounded area. We previously showed that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of the LIM-only protein Fhl2 in response to activation of the RhoA GTPase (Muller, J.M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schule. 2000. EMBO J. 19:359ā€“369; Muller, J.M., E. Metzger, H. Greschik, A.K. Bosserhoff, L. Mercep, R. Buettner, and R. Schule. 2002. EMBO J. 21:736ā€“748.). We demonstrate impaired cutaneous wound healing in Fhl2-deficient mice rescued by transgenic expression of Fhl2. Furthermore, collagen contraction and cell migration are severely impaired in Fhl2-deficient cells. Consequently, we show that the expression of Ī±-smooth muscle actin, which is regulated by Fhl2, is reduced and delayed in wounds of Fhl2-deficient mice and that the expression of p130Cas, which is essential for cell migration, is reduced in Fhl2-deficient cells. In summary, our data demonstrate a function of Fhl2 as a lipid-triggered signaling molecule in mesenchymal cells regulating their migration and contraction during cutaneous wound healing

    Def-6, a Guanine Nucleotide Exchange Factor for Rac1, Interacts with the Skeletal Muscle Integrin Chain Ī±7A and Influences Myoblast Differentiation

    Get PDF
    Integrin alpha7beta1 is the major laminin binding integrin receptor of muscle cells. The alpha7 chain occurs in several splice isoforms, of which alpha7A and alpha7B differ in their intracellular domains only. The fact that the expression of alpha7A and alpha7B is tightly regulated during skeletal muscle development suggests different and distinct roles for both isoforms. However, so far, functional properties and interacting proteins were described for the alpha7B chain only. Using a yeast two-hybrid screen, we have found that Def-6, a guanine nucleotide exchange factor for Rac1, binds to the intracellular domain of the alpha7A subunit. The specificity of the Def-6-alpha7A interaction has been shown by direct yeast two-hybrid binding assays and coprecipitation experiments. This is the first description of an alpha7A-specific and -exclusive interaction, because Def-6 did not bind to any other tested integrin cytoplasmic domain. Interestingly, the binding of Def-6 to alpha7A was abolished, when cells were cotransfected with an Src-related kinase, which is known to phosphorylate Def-6 and stimulate its exchange activity. We found expression of Def-6 was not only restricted to T-lymphocytes as described thus far but in a more widespread manner, including different muscle tissues. In cells, Def-6 is seen in newly forming cell protrusions and focal adhesions, and its localization partially overlaps with the alpha7A integrin receptor. C2C12 myoblasts overexpressing Def-6 show a delay of Rac1 inactivation during myogenic differentiation and abnormal myotube formation. Thus, our data suggest a role for Def-6 in the fine regulation of Rac1 during myogenesis with the integrin alpha7A chain guiding this regulation in a spatio-temporal manner

    Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity

    Get PDF
    In recent years, there has been accumulating evidence that microRNAs are key regulator molecules of gene expression. The cellular processes that are regulated by microRNAs include e.g. cell proliferation, programmed cell death and cell differentiation. Adipocyte differentiation is a highly regulated cellular process for which several important regulating factors have been discovered, but still not all are known to fully understand the underlying mechanisms. In the present study, we analyzed the expression of 597 microRNAs during the differentiation of mouse mesenchymal stem cells into terminally differentiated adipocytes by real-time RT-PCR. In total, 66 miRNAs were differentially expressed in mesenchymal stem cell-derived adipocytes compared to the undifferentiated progenitor cells. To further study the regulation of these 66 miRNAs in white adipose tissue in vivo and their dependence on PPARĪ³ activity, mouse models of genetically or diet induced obesity as well as a mouse line expressing a dominant negative PPARĪ³ mutant were employed

    FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia

    Get PDF
    The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294ā€“335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6

    Integrin Ī±6BĪ²4 inhibits colon cancer cell proliferation and c-Myc activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin Ī²4 subunit is up-regulated in primary colon cancer. Its partner, the integrin Ī±6 subunit, exists as two different mRNA splice variants, Ī±6A and Ī±6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these Ī±6 splice variants is still lacking.</p> <p>Methods</p> <p>In this work, we first analyzed the expression of integrin Ī±6A and Ī±6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of Ī±6A and Ī±6B on the regulation of cell proliferation in a colon cancer cell line.</p> <p>Results</p> <p>Using variant-specific antibodies, we observed that Ī±6A and Ī±6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express Ī±6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed Ī±6B. A relative decrease of Ī±6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the Ī±6A/Ī±6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the Ī±6A/Ī±6B balance in favor of Ī±6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc.</p> <p>Conclusion</p> <p>The findings that the Ī±6BĪ²4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its Ī±6AĪ²4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this Ī±6BĪ²4 integrin. Taken together, these findings point out the importance of integrin variant expression in colon cancer cell biology.</p

    A-RAF Kinase Functions in ARF6 Regulated Endocytic Membrane Traffic

    Get PDF
    BACKGROUND: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149) that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking
    • ā€¦
    corecore