48 research outputs found

    Practical lessons for winning support for radical transport projects

    Get PDF
    This paper proposes that while many plans and solutions to the transport problems of the 21st Century have been mooted, very few have succeeded in significantly improving the situation within Europe. It is suggested that many schemes face problems at the project implementation stage due to adverse public and/or political reaction. This paper incorporates a series of vignettes, several of which are based on indepth interviews with practitioners directly involved in the implementation of 'radical'transport schemes from around the world in an attempt to draw lessons as to how they overcame this, not least in terms of how the implementation of alternative strategies by European policy-makers could be shaped and adopted world-wide

    Social Groups User Needs Survey Findings

    Get PDF

    Bus / DLR / Underground Walk Access Barriers in Tower Hamlets

    Get PDF

    Bus User Walk Access Barriers: Keighley

    Get PDF

    Novel calcium complexes applied to intramolecular hydroamination catalysis

    Get PDF
    This thesis discusses the synthesis, characterisation, and reactivity studies of a range of new chiral calcium complexes supported by various polydentate N-donor ligands and their suitability as catalysts for intramolecular hydroamination. Chapter One outlines the case for developing organocalcium complexes, including a general overview of their current application to a variety of heterofunctionalisation reactions. Chapter Two introduces the chiral ethylene diamines which are extensively used as calcium supporting ligands and later as precursors for the synthesis of bisimidazoline and potential imoxazoline ligands. Chapter Two provides details of the diamine synthesis and includes studies related to racemisation concerns of the chiral centre. Chapter Three discusses novel calcium complexes supported by the chiral ethylene diamine analogues presented in Chapter Two. Complex synthesis, characterisation, and catalytic performance in intramolecular hydroamination is probed and discussed. Chapter Four details a range of new bisimidazoline ligands and their employment as supporting ligands on calcium. The catalytic performance of the resulting complexes in intramolecular hydroamination is subsequently analysed and discussed. Chapter Five investigates the attempted development of a total synthetic pathway to a new class of imoxazoline ligand and related issues. Chapter Six contains all experimental procedures, characterising data pertaining to all new compounds and complexes presented in this Thesis. Appendices A-K contain additional catalytic figures and tables of crystallographic data for all new crystallographically characterised compounds. Summary sheets of every literature and new compound presented mentioned in this Thesis are also included, along with copies of both printed publications resulting from this Thesis at the time of submission

    Developing Accessibility Planning Tools

    Get PDF

    Neuroinflammation in intrauterine growth restriction

    Get PDF
    Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants

    Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of amoeboid microglial cells (AMC) and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia.</p> <p>Results</p> <p>We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC) and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7) but the immunofluorescence in AMC was progressively diminished with advancing age (P14). It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-ι protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% <it>vs </it>hypoxic group) and TNF-ι expression (40% <it>vs </it>hypoxic group). However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid) tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression.</p> <p>Conclusions</p> <p>It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-ι expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate suggesting that P2X4 mediates ATP induced AMC activation and its production of proinflammatory cytokines.</p

    Role of MC1R variants in uveal melanoma

    Get PDF
    Variants of the melanocortin-1 receptor (MC1R) gene have been linked to sun-sensitive skin types and hair colour, and may independently play a role in susceptibility to cutaneous melanoma. To assess the role of MC1R variants in uveal melanoma, we have analysed a cohort of 350 patients for the changes within the major region of the gene displaying sequence variation. Eight variants were detected – V60L, D84E, V92M, R151C, I155T, R160W, R163Q and D294H – 63% of these patients being hetero- or homozygous for at least one variant. Standard melanoma risk factor data were available on 119 of the patients. MC1R variants were significantly associated with hair colour (P¼0.03) but not skin or eye colour. The frequency of the variants detected in the 350 patients was comparable with those in the general population, and comparison of the cumulative tumour distribution by age at diagnosis in carriers and noncarriers provided no evidence that MC1R variants confer an increased risk of uveal melanoma. We interpret the data as indicating that MC1R variants do not appear to be major determinants of susceptibility to uveal melanoma. © 2003 Cancer Research U

    Transport planning for sustainable communities

    No full text
    corecore