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Abstract 1 

Disruption to the maternal environment during pregnancy from events such as hypoxia, 2 

stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. 3 

Intrauterine growth restriction (IUGR) is commonly caused by chronic placental 4 

insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal 5 

fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in 6 

approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and 7 

there is an increased risk of long-term neurological disorders including cerebral palsy, 8 

epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies 9 

have focused on how growth restriction interferes with normal brain development in the 10 

IUGR neonate but recent studies in growth restricted animal models demonstrate increased 11 

neuroinflammation. This review describes the role of neuroinflammation in the progression 12 

of brain injury in growth restricted neonates. Identifying the mediators responsible for 13 

alterations in brain development in the IUGR infant is key to prevention and treatment of 14 

brain injury in these infants.  15 

 16 

 17 

 18 
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Introduction 1 

Intrauterine growth restriction (IUGR) is a major cause of perinatal morbidity and 2 

mortality and occurs in approximately 5-10% of pregnancies [1, 2] with even higher rates 3 

(21%) reported in the developing world [3]. IUGR is generally defined as a fetus that fails to 4 

achieve appropriate growth potential due to genetic or environmental factors. It is 5 

characterised by fetal weight dropping over time across growth percentiles; by birth most 6 

IUGR infants weigh less than the 10th percentile for gestational age. Chronic placental 7 

insufficiency is a common cause of IUGR. Placental insufficiency or utero-placental 8 

dysfunction results in insufficient blood flow to the placenta during pregnancy and 9 

inadequate supply of nutrients and oxygen to support normal growth of the fetus. Thus, the 10 

fetus develops in a chronic hypoxic environment. Placental insufficiency can result in 11 

changes in fetal metabolism, hormones, hematology, immunology and cardiovascular 12 

function.  13 

The adverse fetal environment can significantly affect the developing brain. In a 14 

chronic hypoxic environment, fetal circulatory redistribution occurs; blood flow is selectively 15 

redirected to the brain and away from other organs to maximise oxygen and nutrient supply. 16 

This type of growth restriction is referred to as ‘brain-sparing’ or asymmetric IUGR because 17 

the body is disproportionately smaller than the head. Asymmetrical IUGR is the most 18 

common form of growth restriction affecting 70-80% of all IUGR infants with disruption to 19 

fetal growth occurring mainly in the third trimester. Symmetric IUGR accounts for 20-25% 20 

of all IUGR fetuses and is characterised by a global growth restriction throughout pregnancy. 21 

Brain-sparing has been regarded as a protective mechanism in the IUGR fetus to protect and 22 

promote brain development but recent evidence has challenged this idea (reviewed in [4]). 23 

Several studies have demonstrated that asymmetric IUGR infants i.e. those with ‘brain-24 

sparing’, have worse neurodevelopmental outcomes than symmetric IUGR infants [5-10].  25 
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Brain injury in IUGR 1 

The fetal brain is particularly vulnerable to the effects of IUGR [11]. Long-term 2 

neurological disorders such as cerebral palsy (CP) and epilepsy, as well as learning and 3 

attention difficulties, neurobehavioural disabilities, and other cognitive issues have been 4 

attributed to restricted growth of the fetus [12-15]. A four- to six-fold increase in CP has been 5 

shown in IUGR neonates [14] with others reporting up to a 30-fold increase [16]. The long-6 

term care of a child with compromised brain development is associated with emotional stress 7 

for families and a direct cost on society. Currently there are limited treatments to prevent 8 

neurological impairment in the IUGR neonate. Research is addressing IUGR health problems 9 

from different angles; both the preventative aspect in utero as well as interventions from 10 

birth. As many growth restricted fetuses may not be detected until after birth (especially in 11 

the case of asymmetric IUGR) it is important to examine the vulnerable IUGR brain to best 12 

determine treatment options to prevent long-term adverse neurological outcomes.  13 

Grey and white matter injury in IUGR 14 

Brain injury in the IUGR infant may be due to a combination of grey matter and white 15 

matter disruption and disorganisation in the development of the brain. Clinical imaging 16 

studies of preterm IUGR infants have demonstrated significant alterations in white and grey 17 

matter volume and structure [17-19] including decreased cortical thickness, delayed cortical 18 

development and altered brain connectivity [17-19] in comparison to non-IUGR preterm 19 

infants. In IUGR infants cortical grey matter volume is 28% less than that of age equivalent 20 

healthy term-born infants [17]. Reduced cerebral cortical grey matter volume in the term 21 

IUGR neonate has been shown to correlate with attention disorders [17]. Furthermore, such 22 

grey matter structural changes in the term IUGR infant that persist at 1 year of age have been 23 

found to be associated with developmental disabilities [18, 20]. These alterations are also 24 
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evident in animal models of growth restriction with demonstrated neuronal and white matter 1 

disruption [21-30]. Neuronal loss and disruption are observed in IUGR animal models 2 

throughout many regions of the brain including the hippocampus [29, 31]. A decrease in 3 

proliferation and differentiation of oligodendrocytes are also evident in many growth 4 

restricted animal models [21, 24, 25, 27] with some demonstrating postnatal restoration of 5 

myelin dependent on the severity of injury [25, 26, 30]. Miller et al., 2014 showed decreased 6 

myelination with fragmentation and disorganisation of the white matter tracts in growth 7 

restricted sheep [29]. They postulated these abnormal patterns may result in abnormal 8 

neuronal activity and functionality in the IUGR brain. Even though characterisation of white 9 

matter injury has been a major avenue of investigation in IUGR animal models, neuronal 10 

disruption is also a critical neuropathological feature and brain injury in the IUGR neonate is 11 

a combination of white and grey matter injury. As discussed above, grey matter injury is a 12 

predominate neuropathological feature observed in human studies [17, 18, 20], therefore 13 

further emphasis on mechanisms of neuronal injury in growth restricted animal models 14 

studies are vital.  15 

 16 

Mechanisms of neuronal injury 17 

Few studies have focused on the detailed mechanisms of brain injury in the IUGR 18 

neonate which is surprising given the high proportion of IUGR infants who exhibit adverse 19 

long-term neurological outcomes [18, 19]. There is a considerable paucity of data from 20 

human autopsy tissue of the pathology of the human IUGR brain. A classical study of six 21 

term IUGR infants demonstrated a reduction in myelin lipids and DNA content (used as an 22 

estimate of cell number) in cerebrum-brainstem and cerebellum fractions [32]. More recently 23 

in nine IUGR fetuses a significant decrease in cell number in the developmental zones of the 24 
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cortex has been reported [33]. It is extremely challenging to acertain mechanisms of IUGR 1 

injury from post-mortem human brain tissue. Difficulty in estimating the timing of an IUGR 2 

insult as well as untangling variables of gestational age on brain dvelopment, insults such as 3 

pregnancy hypertension and other factors confound intepretation from human IUGR autopsy 4 

findings. Therefore animal models of IUGR are necessary to adequately explore mechanisms 5 

of injury in the IUGR brain. It is likely that key normal developmental processes are affected 6 

during the growth of the fetal brain and these may underlie the adverse neurodevelopmental 7 

outcomes in the IUGR infant. Understanding the mechanisms behind grey matter and white 8 

matter loss, and impairment in the IUGR infant is essential to identifying therapeutic targets 9 

for intervention or prevention of brain injury. The mechanisms leading to neuronal injury in 10 

the IUGR neonatal brain are complex and not well understood. Although the IUGR fetal 11 

brain is often referred to as hypoxic-ischemic (HI) [34], the IUGR fetal brain is not generally 12 

regarded as globally ischemic as blood flow is actually increased to many regions of the brain 13 

[35-37]. However, the IUGR fetus is relatively hypoxic due to chronic placental oxygen 14 

deprivation. The chronic IUGR insult leads to a reduction in oxygen delivery to the brain and 15 

concomitant reduction in delivery of glucose and amino acids with potential effects on 16 

immature neurons and neuroglia [34]. When cerebral oxygen is reduced, a cascade of cellular 17 

and biochemical events occurs in the fetal brain causing cellular injury that can lead to cell 18 

death [36]. Many of these events result in mitochondrial disruption and immediate or delayed 19 

cell death [34]. The major putative mechanisms that may underpin the cellular death and 20 

injury in IUGR brains are excitotoxicity, oxidative stress, necrotic and apoptotic degeneration 21 

and neuroinflammation [34, 38].  22 

 23 

 24 

 25 

 26 
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Inflammation in the IUGR brain 1 

Recent studies in animal models of growth restriction have reported increased 2 

numbers of activated microglia and astrogliosis, indicative of inflammatory responses in the 3 

IUGR brain (Table 1) [22-27, 31, 39, 40]. Neuroinflammation encompasses a number of 4 

processes including increased numbers of activated microglia, elevated production of 5 

proinflammatory cytokines (particularly interleukin-1β (IL-1β) and tumour necrosis factor-α 6 

(TNF-α)) [41-43], decreased production of anti-inflammatory cytokines [44], release of 7 

chemokines [44-46], increased production of nitric oxide (NO) [47, 48], infiltration of 8 

leukocytes [45] and astrogliosis [48-52]. However many previous IUGR studies have 9 

examined only changes at one postnatal time point or changes of only select inflammatory 10 

cytokines. The neuronal damage and loss which results from neuroinflammation is a dynamic 11 

process and can continue for days or even weeks after a neonatal hypoxic insult [51, 53, 54]. 12 

It is important to focus future studies on the evolving impact of inflammation on neuronal 13 

injury in the IUGR neonate. Whether the IUGR fetus adapts to this milder chronic HI event 14 

such that the neuronal damage is not as severe is unclear. However, given the 15 

neurodevelopmental disabilities prevalent in these children, these adaptations may be mild. A 16 

thorough spatial and temporal examination of inflammation and neuronal injury in the IUGR 17 

neonate is warranted. 18 

 19 

Proinflammatory cytokines 20 

Proinflammatory cytokines are shown to play a critical role in acute HI brain injury 21 

and may cause and/or exacerbate brain damage to the fetal and neonatal brain. The on-going 22 

presence of increased levels of proinflammatory cytokines contributes to white matter 23 

damage as well as neuronal damage after acute neonatal HI [41, 48, 53, 55, 56]. In the 24 
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preterm infant, the occurrence of CP has been attributed, at least partially, to increased levels 1 

of proinflammatory cytokines in the brain [57]. The long-term consequences on 2 

neurodevelopment of the IUGR infant may be due to effects of neuroinflammation generated 3 

by proinflammatory cytokines in the IUGR brain.  4 

Proinflammatory cytokines, such as IL-1β, TNF-α, IL-6 and IL-8 are small, cell 5 

signalling glycoproteins involved in communication between cells [58] and are secreted in 6 

response to cellular injury. Proinflammatory cytokines are released by a variety of cells both 7 

in the brain and also in the blood in response to hypoxic injury. As described below, activated 8 

microglia are the major source of IL-1β and TNF-α in the central nervous system (CNS) [59-9 

61]. IL-6 is produced during astrogliosis where an abnormal increase in the number of 10 

astrocytes occurs in the brain. IL-8’s release into the cerebral spinal fluid after brain injury 11 

has been shown to be associated with blood brain barrier (BBB) dysfunction [62]. 12 

Proinflammatory cytokines promote the progression of injury through complex interactive 13 

networks, such as stimulating the synthesis of other cytokines and mediators of neuronal 14 

injury including NO synthase, inducing leukocyte infiltration and the expression of adhesion 15 

molecules, influencing glial gene expression and damaging oligodendrocytes [63]. Both 16 

TNF-α and IL-1β can also activate matrix metalloproteinases (MMP) which leads to the 17 

disruption of the immature BBB [64, 65]. Furthermore, altered BBB function after HI injury 18 

facilitates entry of systemic proinflammatory cytokines into the brain of the fetus [66].  19 

Systemic proinflammatory cytokines in IUGR 20 

Recent human studies report the presence of systemic inflammation in IUGR neonates 21 

[67, 68]. Severely growth restricted preterm neonates demonstrated significantly higher levels 22 

of proinflammatory cytokines in the blood during the second postnatal week; however at 23 

birth there was no evidence of this increase [67]. In umbilical cord serum from IUGR 24 

neonates at birth, interferon-γ (INF-γ) levels have also been reported to be raised and may be 25 
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related to fetal growth restriction [69]. Furthermore, in mothers of IUGR infants, stimulation 1 

of maternal peripheral blood by trophoblast antigens showed increased levels of 2 

proinflammatory cytokines, IL-8, INF-γ and TNF-α [70] with decreased levels of the anti-3 

inflammatory cytokine IL-10 when compared with mothers of normally grown infants [70]. 4 

Whether the increases in systemic proinflammatory cytokine expression in these IUGR 5 

infants are associated with adverse neurological outcome is not yet clear. However we can be 6 

guided by a study on small for gestational age (SGA) newborns where blood concentrations 7 

of inflammatory proteins were examined during the first two postnatal weeks and correlated 8 

with mental development at two years of age [68]. Extremely preterm SGA newborns were at 9 

increased risk of lower mental development scores. When these SGA infants presented with 10 

systemic inflammation at two weeks of age, they were at an even greater risk of attaining a 11 

lower mental development score at two years of age [68]. 12 

Proinflammatory cytokines in the IUGR brain 13 

Overproduction of proinflammatory cytokines is proposed to be important in the 14 

development of neonatal brain injury [61]. Yet, few studies have focused on its expression in 15 

the IUGR brain. In an IUGR model of chronic hypoxia (chronic fetal hypoxemia; CHX), 16 

inflammatory cytokines are found to be upregulated in the fetal brain [22]. TNF-α and IL-1β 17 

are increased in response to CHX with the elevation in proinflammatory cytokines relative to 18 

the severity of brain injury [22]. Similarly, in a rat model of growth restriction with 19 

lipopolysaccharide treatment, a robust increase in cytokine macrophage chemoattractant 20 

protein-1 (MCP-1) and cytokine induced neutrophil chemoattractant protein-1 (CINC-1) was 21 

evident in the IUGR rats in comparison to controls [39]. Cytokine increases are not only 22 

evident in the brain of IUGR animals; in a rat model of growth restriction an increase in the 23 

proinflammatory cytokines IL-6, TNF-α and IL-1β have also been observed in both the 24 

amniotic fluid and placentas [71]. The increased levels of these cytokines are evident as early 25 
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as 24 hours in the amniotic fluid and placenta after bilateral uterine artery ligation. These 1 

studies confirm not only a systemic inflammatory response, but also a central inflammatory 2 

response. As an increase in BBB permeability occurs in the IUGR neonate [40] it is uncertain 3 

whether there is an infiltration of inflammatory mediators into the brain of the IUGR neonate 4 

or whether inflammation is originating from the brain, and the BBB breakdown facilitates 5 

brain derived inflammatory cells into the blood.  6 

 7 

Activated microglia and reactive astrocytes 8 

Activated microglia 9 

Microglia are the first inflammatory cells that respond to hypoxic events in the 10 

neonatal brain [72]. Microglial cells are resident macrophages in the brain and are present in 11 

large numbers in the developing brain. Microglia are involved in cellular pruning during both 12 

normal development and pathological conditions. Resting (ramified) microglia in the neonate 13 

have multiple processes with a small cell body [73]. Microglial cells function to defend 14 

against infections or toxic substances released from dying brain cells by scavenging and 15 

engulfing unwanted pathogens and cellular debris [74]. Microglia become activated in 16 

response to chemical signals from injured neurons where they increase in number and 17 

migrate to sites of injury [45, 75-78]. Activated microglia are morphologically distinct from 18 

resting microglia. When activated, their processes retract to develop a more rounded, 19 

amoeboid appearance [73]. Activated microglia increase their tendency to bind lectins, up-20 

regulate immunological surface proteins, and release nitric oxide (NO) and proinflammatory 21 

cytokines [79-81]. Activated microglia are largely responsible for the production of excessive 22 

levels of the proinflammatory cytokines, IL-1β and TNF-α, that are toxic to neurons [45, 75, 23 

78]. It is unclear whether the injured neurons initiate the activation of microglia, or the 24 
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activated microglia release factors which injure the neurons; regardless, the result is a cyclic 1 

pro-inflammatory event.   2 

Reactive astrocytes 3 

Astrocytes, the most abundant glial cells in the brain, are involved in maintenance and 4 

support of neurons as well as comprise a significant component of the BBB. In healthy neural 5 

tissue, astrocytes play critical roles in energy provision, regulation of blood flow, 6 

homeostasis of extracellular fluid, homeostasis of ions and transmitters, and regulation of 7 

synapse function [82]. Astrocytes are critical in fetal development for providing scaffolding 8 

for migrating neurons to form the layers and substructures of the brain [83]. Like microglia, 9 

the morphology of astrocytes depends on the health of the tissue around them. In healthy 10 

CNS, astrocytes exhibit large processes and a distinct star shape. Astrocytes become reactive 11 

in response to signals released by injured neurons or activated microglia following an event 12 

such as HI injury [84]. Reactive astrocytes undergo morphological changes where they divide 13 

and become hypertrophic with short and thickened processes [84]. Reactive astrocytes release 14 

various growth factors and cytokines (TNF-α and IL-1β) which exacerbate brain injury. 15 

Reactive astrocytes are also known to physically block neuronal regeneration and therefore 16 

inhibit functional recovery.  17 

Activated microglia and reactive astrocytes in IUGR brain 18 

The limited studies examining microglial and astrocytic response in the IUGR brain 19 

have shown varying results. In a neonatal rat model, antenatal hypoxia-induced IUGR was 20 

found to be associated with severe neuroinflammation and delayed myelination. Increased 21 

microglial activation was apparent in the developing white matter at postnatal day 3 and 10 as 22 

well as an increased density of astrocytes in the cingulate white matter of IUGR pups [27]. 23 

[27]. In contrast, a guinea pig model of chronic placental insufficiency (CPI) demonstrated no 24 
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difference between controls and IUGR guinea pigs in density or morphology of microglia in 1 

the subventricular zone (SVZ) at 60 days of gestation [85]. In addition, no changes in the 2 

density of astrocytes or evidence of reactive morphology of astrocytes in the SVZ were 3 

apparent [85]. Yet the SVZ is a site where few activated glia reside. Furthermore neuronal 4 

death was not observed in the SVZ but was evident in other regions of the brain [85], 5 

therefore this region is likely less affected by inflammation in IUGR neonates. Further 6 

regions of the brain warrant exploration at multiple postnatal time points.  7 

However the majority of studies demonstrate a definitive astrocytic response in the 8 

IUGR brain. A reduced number of mature cortical astrocytes was observed in an 9 

experimental rabbit vascular IUGR model compared with controls [86]. This model of 10 

asymmetric IUGR demonstrates that the brain is not ‘spared’ from cellular disruption. Not 11 

only was there a disruption of astrocyte maturation in the cortical layer, but also a reduction 12 

in cell size [86]. A rat model of placental insufficiency also reports reactive astrocytosis in 13 

the corpus callosum and cingulum [23]. IUGR lambs show a loss of peri-vascular astrocyte 14 

attachment. Astrocytes are also essential for the maintenance of the BBB [40] and disruption 15 

to this cell type may mitigate the infiltration of systemic inflammatory mediators into the 16 

brain.  17 

A further study in rat pups with prenatal moderate and severe growth restriction 18 

induced by unilateral ligation of the uterine artery reported increased activated microglia and 19 

astrogliosis in the white matter [25]. A notable inflammatory response with concomitant 20 

white matter injury in the severe growth restricted rat pup was apparent. Activated microglia 21 

were significantly elevated 2 weeks after birth, at a critical time point when white matter 22 

remodelling and neuronal pruning is occurring, which will have long-term consequences on 23 

the developing brain [25]. 24 
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Gender differences have also been reported in several IUGR studies. In a model of 1 

uteroplacental insufficiency in the rat, region and gender specific changes in astrocytic 2 

deficits were observed in the hippocampus [31]. A significant increase in the amount of 3 

astrocytes in the dentate gyrus was apparent in males with a contrasting decrease in astrocytes 4 

in the CA3 region. As IUGR males demonstrate worse behavioural deficits than females, 5 

differences in astrocyte response to injury and subsequent inflammatory responses in the 6 

brain may account for the higher rate of adverse outcomes in the IUGR male.  7 

 8 

Conclusion 9 

Chronic deprivation of oxygen and nutrients to the developing fetus through altered 10 

placental function has dramatic consequences on fetal brain development. Activation of 11 

inflammatory pathways both systemically and in the brain are thought to play a key role in 12 

altered brain development and may contribute to the poor neurodevelopmental outcomes 13 

associated with chronic placental insufficiency [67, 68]. Understanding how the IUGR brain 14 

is damaged by examining where inflammation is occurring, when it is occurring and its 15 

impact on various cell types and white matter will facilitate the development of appropriate 16 

targeted therapies to improve neurodevelopmental outcomes.  17 

 18 
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Table 1. Glial and inflammatory responses in animal models of fetal growth restriction 
  Time Frame  

 
Outcomes  

IUGR Insult  Model Insult Examination Brain region 
  

Microglia Astrocytes Oligos Neurons Cytokines Other 

Pregnant rats exposed to 
hypoxic conditions and 
nitric oxide inhalation 
(Pham et al, 2015) [27] 

Rat E5-E19 

P3, P10 and 
P21 (NO given 
12-24 hrs prior 

to delivery 
until P5) 

white matter 

  

increased 
microglial 
activation 

  
decreased 

proliferation and 
differentiation 

    

Nitric oxide helps counteract hypoxia by 
decreasing cell death and microglial activation, 
increasing oligodendroglial proliferation and 
improving myelination.  

Chronic placental 
insufficiency with 
broccoli sprout 
supplement (Black et al, 
2015) [23] 

Rat 

GR E20; 
BrSp 

supplement 
given to 

dams E15-
P14 (term is 

23 days) 

P3 - P21 
hippocampus, corpus 

callosum and 
cingulum 

  

  astrogliosis    
decreased 

hippocampus 
neural cells 

  
BrSp alleviated the GR effects of diminished 
white matter, ventricular dilation, astrogliolis, 
and reduced hippocampal neural cells. 

Bilateral uterine artery 
ligation and magnesium 
supplement (Roman et 
al, 2013) [71] 

Rat GD18 
fluids taken 
post delivery 

n/a 

  

        
increase in 
cytokines 

Mg supplements decreased effects of GR. No 
significant difference in maternal and fetal 
plasma. Significant increases in IL-6, IL-1β, 
TNF-α, and CCL2 (MCP-1) and CSCL1 levels 
24 hours post-surgery in amniotic fluid and 
placenta. 

Uteroplacental 
insufficiency (Fung et al, 
2012) [31] 

Rat E19.5 at Birth P0 hippocampus 

  

  
changes 

specific to 
gender 

changes specific 
to gender 

decreased 
locations 
specific to 

gender 

  

GR induces neuronal, astrocytic and immature 
oligodendrocyte deficits in a region and sex 
specific manner. GR increased the amount of 
dentate gyrus astrocytes in males only. GR 
decreased the amount of CA3 astrocytes in 
males only. GR significantly increased amount 
of CA1 immature oligodendrocytes in females 
but decreased the amount in males. 

Maternal uterine artery 
ligation and 
lipopolysaccharide 
(Campbell et al, 2012) 
[39] 

Rat GD14 P6 
whole brain and 

entire periventricular 
white matter 

  

no difference 
in numbers 
without LPS 

treatment 

no 
astrogliosis 
without LPS 

treatment 

no white matter 
impairment 
without LPS 

treatment 

  

LPS 
elevated 

proinflamm
atory 

cytokines 

GR rats with LPS treatment demonstrated 
enhanced brain damage with increased 
apoptosis, large ventricles and impaired 
myelination, activated microglia and 
astrogliosis. 

Transient systemic 
hypoxia-
ischemia/placental 
insufficiency (Mazur et 
al, 2010) [21] 

Rat 
GD18 
(Third 

Trimester)  
GD22 (P1) 

frontal Lobe, coronal 
‘sections’ (ventral 

hippocampal 
commissure-anterior 

temporal horn)   

    
loss of 

oligodendrocytes 
loss of neural 

cells 
  

EPO administration rescued oligodendrocytes 
and neural cells. 

Maternal unilateral 
uterine artery ligation 
(Olivier et al, 2007) [25] 

Rat E17 

E21, Birth 
(P0), P3, P7, 

P10, P14, P21 
and P60 (in 

adults) 

white matter 

  

microglial 
activation 

astrogliosis 

loss of 
oligodendrocytes - 
may be restored in 
P14 moderate GR 

pups 

    

White matter lesions were smaller in pups with 
moderate GR and larger in pups with severe 
GR - rats with severe GR white matter damage 
persisted to adulthood. 
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Maternal unilateral 
uterine artery ligation 
(Olivier et al, 2005) [24] 

Rat E17 

E21, Birth 
(P0), P3, P7, 

P10, P14, P21 
and P60 (in 

adults) 

white matter 

  

increased 
microglia 

astrogliosis 
loss of 

oligodendrocytes 
    Defective myelination until adulthood. 

Chronic placental 
insufficiency (Tolcos et 
al, 2015) [85] 

Guinea 
Pig 

GD30 (term 
is 67 days) 

GD60-62 
subventricular zone 

(SVZ) 
  

no difference 
in density or 
morphology 

no 
astrogliosis 

  

increase in 
neuronal 
precursor 

cells 

  
Blood vessel density increase with cell 
proliferation to counter effects of CPI. 

Chronic placental 
insufficiency (Tolcos et 
al, 2011) [26] 

Guinea 
Pig 

GD30 (Mid 
gestation) 

Day of birth 
(GD 67) 1 
week or 8 

weeks 

cerebral 
Hemispheres/cerebell

um/white matter 

  

Increase in 
microglial 
density at 
GD60 in 
WM. No 

difference at 
1 week of age 

Increase in 
astrocyte 
density at 
GD60 in 
WM. No 

difference at 
1 week of 

age 

Oligods reduced 
in GR fetuses - 

post natal 
recovery 

    
Delay in oligodendrocyte maturation and 
myelination in utero is transient. Myelin 
restored postnatally. 

Chronic fetal hypoxemia 
(Guo et al, 2010) [22] 

Guinea 
Pig 

GD46-49 
for 14 days 

Days 64-65 hippocampus 
  

microglial 
activation 

    
loss of 

neuronal 
cells 

increase in 
cytokines 

Fetal adaptive response to chronic hypoxia is 
‘maladaptive’ 

Spontaneous growth 
restriction and unilateral 
uterine artery ligation 
(Tolcos et al, 2003) [87] 

Guinea 
Pig 

GD28-30 
(term is 66-

68 days) 
P6 medulla 

  

  

no 
difference 
between 
groups 

      
Alterations in respiratory and thermoregulatory 
responses with greater effects seen following 
spontaneous GR rather than experimental GR. 

Unilateral uterine artery 
ligation (Mallard et al, 
2000) [28] 

Guinea 
Pig 

GD30 Day 4-7 
hippocampus and 

cerebellum  
  

      
decrease in 
amount of 
neurons 

  Reduced volume of cerebral WM. 

Maternal unilateral 
uterine artery ligation 
(Tolcos and Rees 1997) 
[88] 

Guinea 
Pig 

GD28-30 
(term is 66-

68 days) 
GD60-62 brainstem regions 

  

  
proliferation 

of 
astrocytes 

  no change   

Proliferation of astrocytes in the dorsal motor 
nucleus of the vagus, nucleus tractus solitarius 
and around blood vessels throughout the 
brainstem 

Vascular IUGR (Bassan 
et al, 2010) [86] 

Rabbit 
GD25 
(Third 

Trimester) 

GD29 (term is 
31 days) 

cerebral hemispheres 
and posterior fossa 

  
  

Decline in 
astrocyte 

index 
      

Small fetuses, small body large head, 
asymmetric GR. 

Chronic placental 
insufficiency (Castillo-
Melendez et al, 2015) 
[40] 

Lamb 
GD105-110 
(term is 145 

days) 
P1 white matter 

  

  
astrocyte 

attachment 
lost 

      

GR lambs demonstrate reduced vessel density 
within the WM. Attachment of astrocytes and 
pericytes to blood vessels is reduced in GR 
lambs, which may impact the integrity of the 
BBB. 

Single umbilical artery 
ligation and melatonin 
treatment (Miller et al, 
2014) [29] 

Sheep GD105-110 
24 hours after 

birth 

white and grey 
matter: forebrain, 

hippocampus, 
thalamus, cerebral 

cortex 

  

    
white matter loss; 
hypomyelination 

no consistent 
loss of 

neurons in 
cortex; 

neuronal 
degeneration 

in 
hippocampus 

  

WM tracts were fragmented and disorganised 
in GR brains. Cortical organisation and 
neuronal morphology altered in some GR 
brains, especially within deeper layers of the 
cortex.  

 


