39 research outputs found

    Immune checkpoint expression in HNSCC patients before and after definitive chemoradiotherapy

    Get PDF
    Background Primary platinum-based chemoradiotherapy (CRT) remains the treatment of choice for nonresectable squamous cell carcinoma of the head and neck (HNSCC). Immune-checkpoint modulators are used as palliative therapy and studied in combination with definitive CRT. However, the immunological changes by CRT need yet to be understood. Methods A cohort consisting of 67 paired tissue biopsies (N = 134) of HNSCC patients before and after CRT was created. The expression of PD-1, PD-L1, and CD27 of tumor and immune cells by immunohistochemistry was evaluated. Results PD-L1 expression on immune cells of non-responders was significantly lower before CRT (P = .008). CD27 was expressed only on immune cells and not on cancer cells. A significant lower CD27-expression score was observed following CRT (P = .019). Conclusions Conventional CRT changes the expression of CD27 in the tumor microenvironment. Whether this is due to a loss of expression or a reduction of CD27+ cells must be evaluated in further analyses

    Changes in gene expression patterns in the tumor microenvironment of head and neck squamous cell carcinoma under chemoradiotherapy depend on response

    Get PDF
    Chemoradiotherapy (CRT) is a standard treatment for advanced head and neck squamous cell carcinoma (HNSCC). Unfortunately, not all patients respond to this therapy and require further treatment, either salvage surgery or palliative therapy. The addition of immunotherapy to CRT is currently being investigated and early results describe a mixed response. Therefore, it is important to understand the impact of CRT on the tumor microenvironment (TME) to be able to interpret the results of the clinical trials. Paired biopsies from 30 HNSCC patients were collected before and three months after completion of primary CRT and interrogated for the expression of 1392 immune- and cancer-related genes. There was a relevant difference in the number of differentially expressed genes between the total cohort and patients with residual disease. Genes involved in T cell activation showed significantly reduced expression in these tumors after therapy. Furthermore, gene enrichment for several T cell subsets confirmed this observation. The analysis of tissue resident memory T cells (TRM) did not show a clear association with impaired response to therapy. CRT seems to lead to a loss of T cells in patients with incomplete response that needs to be reversed. It is not clear whether the addition of anti-PD-1 antibodies alone to CRT can prevent treatment failure, as no upregulation of the targets was measurable in the TME

    Prospective longitudinal study of immune checkpoint molecule (ICM) expression in immune cell subsets during curative conventional therapy of head and neck squamous cell carcinoma (HNSCC)

    Get PDF
    Programmed-death-1 (PD1) antibodies are approved for recurrent and metastatic head and neck squamous cell carcinoma. Multiple drugs targeting costimulatory and coinhibitory immune checkpoint molecules (ICM) have been discovered. However, it remains unknown how these ICM are affected by curative conventional therapy on different immune cell subsets during the course of treatment. In the prospective noninterventional clinical study titled “Immune Response Evaluation to Curative conventional Therapy” (NCT03053661), 22 patients were prospectively enrolled. Blood samples were drawn at defined time points throughout curative conventional treatment and follow-up. Immune cells (IC) from the different time points were assessed by multicolor flow cytometry. The following ICM were measured by flow cytometry: PD1, CTLA4, BTLA, CD137, CD27, GITR, OX40, LAG3 and TIM3. Dynamics of ICM expression were assessed using nonparametric paired samples tests. Significant changes were noted for PD1, BTLA and CD27 on multiple IC types during or after radiotherapy. Nonsignificant trends for increased expression of OX40 and GITR from baseline until the end of RT were observed on CD4 T cells and CD4+ CD39+ T cells. In patients with samples at recurrence of disease, a nonsignificant increase of TIM3 and LAG3 positive CD4+ CD39+ T cells was evident, accompanied by an increase of double positive cells for TIM3/LAG3. Potential future targets to be combined with RT in the conventional treatment and anti-PD1/PD-L could be BTLA agonists, or agonistic antibodies to costimulatory ICM like CD137, OX40 or GITR. The combination of cetuximab with CD27 agonistic antibodies enhancing ADCC or the targeting of TIM3/LAG3 may be another promising strategy

    Protein-based oncopanel as addition to target sequencing in head and neck squamous cell carcinoma to individualize treatment decisions

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers and patients have limited therapy options if primary treatment fails. Therefore, additional information about the biology of the tumor is essential. Here we performed a feasibility study of concurrently applying two precision diagnostic tools in a consecutive series of HNSCC patients. We analyzed tumor samples of 31 patients using a genomic (oncomine) and a proteomic, immunohistochemical approach (oncopanel) and compared the result, also in the focus on their overlapping therapeutical targets. We found no strong correlation between the two approaches and observed a higher proportion of marker expression for the immunohistochemical panel. However, both panels show in our HNSCC cohort distinct patterns with druggable targets. The data suggest that both approaches complement one another and can be applied side-by-side to identify the best targets for the development of individual treatment options for HNSCC patients

    Peripheral cytokine levels differ by HPV status and change treatment-dependently in patients with head and neck squamous cell carcinoma

    Get PDF
    Cytokines and immune mediators play an important role in the communication between immune cells guiding their response to infectious diseases or cancer. In this study, a comprehensive longitudinal analysis of serum cytokines and immune mediators in head and neck squamous cell carcinoma (HNSCC) patients was performed. In a prospective, non-interventional, longitudinal study, blood samples from 22 HNSCC patients were taken at defined time points (TP) before, during, and every 3 months after completion of (chemo)radio)therapy (CRT/RT) until 12 months after treatment. Serum concentrations of 17 cytokines/immune mediators and High-Mobility-Group-Protein B1 (HMGB1) were measured by fluorescent bead array and ELISA. Concentrations of sFas were significantly elevated during and after CRT/RT, whereas perforin levels were significantly decreased after CRT/RT. Levels of MIP-1β and Granzyme B differed significantly during CRT/RT by HPV status. Increased HMGB1 levels were observed at recurrence, accompanied by high levels of IL-4 and IL-10. The sFas increase and simultaneous perforin decrease may indicate an impaired immune cell function during adjuvant radiotherapy. Increased levels of pro-inflammatory cytokines in HPV+ compared to HPV− patients seem to reflect the elevated immunogenicity of HPV-positive tumors. High levels of HMGB1 and anti-inflammatory cytokines at recurrence may be interpreted as a sign of immune evasion

    Increasing mean age of head and neck cancer patients at a German tertiary referral center

    Get PDF
    Background: The impact of demographic change on the age at diagnosis in German head and neck cancer (HNC) patients is unclear. Here we present an evaluation of aging trends in HNC at a tertiary referral center. Methods: Retrospective cohort study on aging trends at the initial diagnosis of newly diagnosed patients with HNC between 2004 and 2018 at the head and neck cancer center Ulm in relation to demographic data of the catchment area. Results: The study population consisted of 2450 individuals diagnosed with HNC with a mean age of 62.84 (±11.67) years. We observed a significant increase in annual incidence rates and mean age over time. Mean age among HNC patients increased significantly more than among the population in the catchment area. Whereas the incidence rate of patients <50 years did not change, the incidence of HNC patients aged ≥70 years increased the most. The mean patient age in the main tumor sites increased significantly. Surprisingly, HPV-positive patients were not younger than HPV-negative patients, but showed a non-significant trend towards a higher mean age (63.0 vs. 60.7 years). Conclusions: Increasing incidence rates in older patients pose a challenge for health care systems. A nationwide study is needed to assess the dynamics and impact of aging on the incidence of HNC

    Correlation of HPV16 Gene Status and Gene Expression With Antibody Seropositivity and TIL Status in OPSCC.

    Get PDF
    IntroductionHuman papillomavirus 16 (HPV16) is the main cause of oropharyngeal squamous cell carcinoma (OPSCC). To date, the links between HPV16 gene expression and adaptive immune responses have not been investigated. We evaluated the correlation of HPV16 DNA, RNA transcripts and features of adaptive immune response by evaluating antibody isotypes against E2, E7 antigens and density of tumor-infiltrating lymphocytes (TIL).Material and methodsFFPE-tissue from 27/77 p16-positive OPSCC patients was available. DNA and RNA were extracted and quantified using qPCR for all HPV16 genes. The TIL status was assessed. Immune responses against E2 and E7 were quantified by ELISA (IgG, IgA, and IgM; 77 serum samples pre-treatment, 36 matched post-treatment).ResultsAmounts of HPV16 genes were highly correlated at DNA and RNA levels. RNA co-expression of all genes was detected in 37% (7/19). E7 qPCR results were correlated with higher anti-E7 antibody (IgG, IgA) level in the blood. Patients with high anti-E2 IgG antibody (>median) had better overall survival (p=0.0311); anti-E2 and anti-E7 IgA levels had no detectable effect. During the first 6 months after treatment, IgA but not IgG increased significantly, and >6 months both antibody classes declined over time. Patients with immune cell-rich tumors had higher levels of circulating antibodies against HPV antigens.ConclusionWe describe an HPV16 qPCR assay to quantify genomic and transcriptomic expression and correlate this with serum antibody levels against HPV16 oncoproteins. Understanding DNA/RNA expression, relationship to the antibody response in patients regarding treatment and outcome offers an attractive tool to improve patient care

    The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination

    Get PDF
    Background The immune peptidome of OPSCC has not previously been studied. Cancer-antigen specific vaccination may improve clinical outcome and efficacy of immune checkpoint inhibitors such as PD1/PD-L1 antibodies. Methods Mapping of the OPSCC HLA ligandome was performed by mass spectrometry (MS) based analysis of naturally presented HLA ligands isolated from tumour tissue samples (n = 40) using immunoaffinity purification. The cohort included 22 HPV-positive (primarily HPV-16) and 18 HPV-negative samples. A benign reference dataset comprised of the HLA ligandomes of benign haematological and tissue datasets was used to identify tumour-associated antigens. Results MS analysis led to the identification of naturally HLA-presented peptides in OPSCC tumour tissue. In total, 22,769 peptides from 9485 source proteins were detected on HLA class I. For HLA class II, 15,203 peptides from 4634 source proteins were discovered. By comparative profiling against the benign HLA ligandomic datasets, 29 OPSCC-associated HLA class I ligands covering 11 different HLA allotypes and nine HLA class II ligands were selected to create a peptide warehouse. Conclusion Tumour-associated peptides are HLA-presented on the cell surfaces of OPSCCs. The established warehouse of OPSCC-associated peptides can be used for downstream immunogenicity testing and peptide-based immunotherapy in (semi)personalised strategies

    Targeting the tumor mutanome for personalized vaccination in a TMB low non-small cell lung cancer.

    Get PDF
    BackgroundCancer is characterized by an accumulation of somatic mutations, of which a significant subset can generate cancer-specific neoepitopes that are recognized by autologous T cells. Such neoepitopes are emerging as important targets for cancer immunotherapy, including personalized cancer vaccination strategies.MethodsWe used whole-exome and RNA sequencing analysis to identify potential neoantigens for a patient with non-small cell lung cancer. Thereafter, we assessed the autologous T-cell reactivity to the candidate neoantigens using a long peptide approach in a cultured interferon gamma ELISpot and tracked the neoantigen-specific T-cells in the tumor by T-cell receptor (TCR) sequencing. In parallel, identified gene variants were incorporated into a Modified Vaccinia Ankara-based vaccine, which was evaluated in the human leucocyte antigen A*0201 transgenic mouse model (HHD).ResultsSequencing revealed a tumor with a low mutational burden: 2219 sequence variants were identified from the primary tumor, of which 23 were expressed in the transcriptome, involving 18 gene products. We could demonstrate spontaneous T-cell responses to 5/18 (28%) mutated gene variants, and further analysis of the TCR repertoire of neoantigen-specific CD4+ and CD8+ T cells revealed TCR clonotypes that were expanded in both blood and tumor tissue. Following vaccination of HHD mice, de novo T-cell responses were generated to 4/18 (22%) mutated gene variants; T cells reactive against two variants were also evident in the autologous setting. Subsequently, we determined the major histocompatibility complex restriction of the T-cell responses and used in silico prediction tools to determine the likely neoepitopes.ConclusionsOur study demonstrates the feasibility of efficiently identifying tumor-specific neoantigens that can be targeted by vaccination in tumors with a low mutational burden, promising successful clinical exploitation, with trials currently underway

    Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs

    Get PDF
    Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity
    corecore