
ARTICLE OPEN

Translational Therapeutics

The HLA ligandome of oropharyngeal squamous cell
carcinomas reveals shared tumour-exclusive peptides
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BACKGROUND: The immune peptidome of OPSCC has not previously been studied. Cancer-antigen specific vaccination may
improve clinical outcome and efficacy of immune checkpoint inhibitors such as PD1/PD-L1 antibodies.
METHODS: Mapping of the OPSCC HLA ligandome was performed by mass spectrometry (MS) based analysis of naturally
presented HLA ligands isolated from tumour tissue samples (n= 40) using immunoaffinity purification. The cohort included 22 HPV-
positive (primarily HPV-16) and 18 HPV-negative samples. A benign reference dataset comprised of the HLA ligandomes of benign
haematological and tissue datasets was used to identify tumour-associated antigens.
RESULTS: MS analysis led to the identification of naturally HLA-presented peptides in OPSCC tumour tissue. In total, 22,769
peptides from 9485 source proteins were detected on HLA class I. For HLA class II, 15,203 peptides from 4634 source proteins were
discovered. By comparative profiling against the benign HLA ligandomic datasets, 29 OPSCC-associated HLA class I ligands covering
11 different HLA allotypes and nine HLA class II ligands were selected to create a peptide warehouse.
CONCLUSION: Tumour-associated peptides are HLA-presented on the cell surfaces of OPSCCs. The established warehouse of
OPSCC-associated peptides can be used for downstream immunogenicity testing and peptide-based immunotherapy in (semi)
personalised strategies.
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BACKGROUND
Oropharyngeal squamous cell carcinoma (OPSCC) is diagnosed in
93,000 patients worldwide per year and 51,000 annual deaths can
be attributed to this disease [1]. In OPSCC, human papillomavirus
induced (HPV-positive) cancers and non-virally associated, pri-
marily tobacco- and alcohol-associated (HPV-negative) cancers
must be discriminated [2, 3]. For different types of curative
treatment, a survival advantage for HPV-positive OPSCC has been

confirmed [4–6]. As a result, the latest classification of the
American Joint Committee on Cancer (AJCC) cancer staging
manual version 8 discriminates between HPV-positive and HPV-
negative cancers based on the surrogate marker p16 [7, 8].
Immunotherapy targeting the PD1/PD-L1 axis has become a
central column of treatment in recurrent and metastatic disease
[9–11] and is currently studied intensively in locoregionally
advanced disease [12–14]. In recurrent and metastatic disease,
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the response rates of anti-PD1 antibodies lie below 20% [9–11].
Because the success of PD1/PD-L1 antibodies relies on the
presence of pre-existing cancer-antigen specific immunity [15],
vaccination against cancer antigens may improve efficacy of such
treatments [16]. However, it is currently unclear which antigens
should be targeted. Immune responses to viral antigens in HPV-
positive disease [17, 18] and immune responses to other cancer
antigens [19, 20] including mutation-associated antigens, so called
neoantigens, have previously been described [21, 22]. The
respective significance of the different types of cancer antigens
for immunotherapy is currently unclear.
To establish vaccination strategies for OPSCC, it is crucial to

understand its antigenic landscape. Tumour-specific immune cells
rely on the presentation of peptides from cancer antigens on
human leucocyte antigens (HLA)—the immunopeptidome or HLA
ligandome. For optimal immune responses against the tumour,
these HLA-presented peptides need to be tumour-exclusive. Thus,
the analysis of the HLA ligandome can be used to identify
promising disease-specific vaccination targets [23–26].
Here we performed the first comprehensive analysis of the

natural HLA ligandome of OPSCC by mass spectrometry to guide
personalised or semi-personalised vaccine development.

MATERIALS AND METHODS
Patients
Patients with histologically confirmed OPSCC who were treated surgically
were included into this non-interventional study except for one patient
who preferred definitive chemoradiotherapy. The sample was taken during
panendoscopy in this patient. Fresh frozen tissue samples derived from 22
HPV-positive and 18 HPV-negative patients were prospectively collected at
Ulm University Medical Center before treatment initiation. HPV status was
determined via RNA-Seq (compare below).
Among the 22 HPV-positive patients, 19 were associated with HPV-16 and

the other three with HPV-35, HPV-58 or HPV-59, respectively. OPSCC tumour
biopsies and tonsillar tissue samples from five healthy donors were surgically
resected, immediately snap-frozen in liquid nitrogen (N2) and subsequently
stored at−80 °C. Written informed consent was obtained in accordance with
the Declaration of Helsinki protocol. The study was performed according to
the guidelines of the local ethics committee (222/13, 90/15). Patient
demographics including sex are provided in Table 1.

HLA typing
High resolution HLA-typing for the loci HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1
was performed using an in-house developed IVD-CE-certified NGS-amplicon
sequencing protocol (H-Seq-LR-NGS, DRK-BSD, Baden-Württemberg Hessen,
Ulm), based on the Illumina MiSeq platform (San Diego, CA, USA) [27] or
based on the HLA-binding motifs of isolated HLA-presented peptides using
SYFPEITHI [28] and NetMHC [29].

Isolation of HLA-presented peptides
HLA class I- and class II-presented peptides were isolated from tissue
samples performing standard immunoaffinity purification as previously
described [30]. The HLA class I A-, B-, and C-specific monoclonal antibody
(mAb) W6/32, the pan-HLA class II-specific mAb Tü-39, and the HLA-DR-
specific mAb L243 (all produced in-house) were used to extract HLA
molecules.

Analysis of HLA ligands by liquid chromatography–tandem
MS
HLA ligand extracts were analysed as previously described [25] and were
separated using reversed-phase ultra-high performance liquid chromato-
graphy (nanoUHPLC, UltiMate 3000 RSLCnano, Dionex). Eluted peptides
were analysed by tandem mass spectrometry (MS/MS) in an on-line
coupled LTQ Orbitrap XL hybrid mass spectrometer (Thermo Fisher
Scientific) equipped with a nano-electrospray ion source.

Data processing
Processing of MS data was performed using the Proteome Discoverer
1.4 software (Thermo Fisher Scientific). Database search and spectral

annotation were performed against the human proteome as comprised in
the UniProtKB/Swiss-Prot database (20,279 reviewed protein sequences;
September 27, 2013; www.uniprot.org) via the SequestHT algorithm.
Search for HLA-presented peptides derived from viral proteins was based
on the HPV proteome as comprised in the UniProtKB/Swiss-Prot database
(470 reviewed protein sequences; January 5, 2018; www.uniprot.org). Mass
tolerance for processing was set to 5 ppm for precursor ions and 0.5 Da for
fragment ions. Oxidised methionine was allowed as only dynamic
modification and no cleavage specificity was selected. Peptide identifica-
tions were filtered using the Percolator 2.04 [31] with a target value of
q ≤ 0.05 (5% FDR). Additional filters for search engine rank (=1) and
peptide length (=8–25 amino acids) were applied. HLA class I ligand
annotation was performed using SYFPEITHI [28] and NetMHCpan 4.0 [29].

HPV typing/RNA sequencing
For this analysis, RNA sequencing data were only used to define HPV
status. Total RNA was extracted using AllPrep DNA/RNA Mini Kit (Qiagen,
Germany) from fresh, snap-frozen tumour samples. Sequencing of RNA
samples was performed using Illumina’s next-generation sequencing
methodology [32]. In detail, total RNA was quantified and quality checked
using Agilent 2100 Bioanalyzer Instrument (Agilent RNA 6000 Pico).
Libraries were prepared from 500 ng of input material using TruSeq
Stranded mRNA (manufacturer’s instructions) and subsequently quantified
and quality checked using Agilent 2100 Bioanalyzer Instrument (DNA 7500
kit). Libraries were pooled and sequenced in one lane of HiSeq 2500
System running in 51 cycle/single-end/high output mode. Sequence
information was converted to FASTQ format using bcl2fastq (2.20.0.422).
High-quality SE reads were mapped to the human genome (hg38) using
STAR (2.0.9) and, following the removal of multimapping reads, converted
to gene-specific read counts for annotated genes using featureCounts
(2.0.0). Unmapped reads to the human genome were aligned to HPV high-
risk type genomes using a viGen bioinformatic pipeline [33]. Samples with
≥500 reads for HPV E6 or E7 RNA or ≥500 reads for all HPV oncogenes
(E1, E2, E4, E5, E6, E7, L1, L2) in summary were considered HPV-positive.
The HPV type with the highest number of reads was selected. HPV-
negative cases had a mean of 8 reads for E1, E2, E4, E5, E6, E7, L1, L2 in
summary (range: 0–23). HPV RNA reads for HPV-16, -18, -35, -58, and -59
are shown in supplementary table 1. In addition to RNA sequencing, data
for p16 immunohistochemistry and HPV DNA PCR were available for all
samples. Our complete HLA-peptidome dataset was specifically queried for
HPV-specific peptides.

Whole-exome sequencing
DNA was extracted using the Qiagen AllPrep DNA/RNA Mini Kit.
Sequencing of exome samples was performed using Illumina’s next-
generation sequencing methodology [32]. In detail, total DNA was quality
checked using Agilent 4200 TapeStation System (Agilent Genomic DNA
ScreenTape) and quantified using Quant-iT™ PicoGreen™. Libraries were
prepared from 3 µg of input material using SureSelect Human All Exon V6
(manufacturer’s instructions) and subsequently quantified and quality
checked using Agilent 4200 TapeStation System (D1000 ScreenTape).
Libraries were pooled and sequenced on NextSeq 500 System (High
Output Flow Cell) running in 150 cycle (2 × 75 bp paired-end) mode.
Sequence information was converted to FASTQ format using bcl2fastq
v2.20.0.422. The WES data were used to search for HLA-presented
individual neoepitopes in the complete OPSCC HLA ligandome dataset
of each patient with available whole exome sequencing data (38/40
patients). Database search and spectral annotation were performed
against the combination of the human proteome as comprised in the
UniProtKB/Swiss-Prot database and the mutated protein sequences as
defined for the respective patients.

Software, statistical analysis and online tools
For overlap analysis, BioVenn [34] and jVenn [35] were used. The benign
reference dataset used for comparative profiling was comprised of the HLA
ligandome data of a previously reported haematological benign cohort
[36], the benign tissue dataset provided within the HLA Ligand Atlas [37] as
well as additional in-house acquired HLA ligandome data of benign tissue
and cell line samples. HLA ligandome data were also compared to
previously published immunopeptidomes of other solid malignant
diseases (ovarian cancer [25], hepatocellular carcinoma [38], renal cell
carcinoma [39], glioblastoma [40]). Statistical analysis was performed using
the GraphPad Prism 6.1/9.01 software (GraphPad Software Inc).
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Table 1. Patient characteristics.

HPV negative % HPV positive % Total %

Total 18 45.0% 22 55.0% 40 100.0%

Sex Male 12 66.7% 21 95.5% 33 82.5%

Female 6 33.3% 1 4.5% 7 17.5%

Age 59.6 n.a. 60.2 n.a. 59.9 n.a.

pTa pT1/T2 7 38.9% 11 50.0% 18 45.0%

pT3/T4 10 55.6% 11 50.0% 21 52.5%

Missing 1 5.6% 0 0.0% 1 2.5%

pNa pN0 6 33.3% 8 36.4% 14 35.0%

pN1 4 22.2% 6 27.3% 10 25.0%

pN2 2 11.1% 7 31.8% 9 22.5%

pN3a/b 5 27.8% 1 4.5% 6 15.0%

Missing 1 5.6% 0 0.0% 1 2.5%

Stage (UICC v8) I 1 5.6% 7 31.8% 8 20.0%

II 3 16.7% 10 45.5% 13 32.5%

III 6 33.3% 3 13.6% 9 22.5%

IV (a/b) 8 44.4% 2 9.1% 10 25.0%

R statusa R0 13 72.2% 20 90.9% 33 82.5%

R1 1 5.6% 1 4.5% 2 5.0%

Close margin (<5mm) 3 16.7% 1 4.5% 4 10.0%

L statusa L0 9 50.0% 12 54.5% 21 52.5%

L1 8 44.4% 10 45.5% 18 45.0%

Missing 1 5.6% 0 0.0% 1 2.5%

V statusa V0 17 94.4% 20 90.9% 37 92.5%

V1 0 0.0% 2 9.1% 2 5.0%

Missing 1 5.6% 0 0.0% 1 2.5%

Pn statusa Pn0 11 61.1% 20 90.9% 31 77.5%

Pn1 6 33.3% 2 9.1% 8 20.0%

Missing 1 5.6% 0 0.0% 1 2.5%

ENEa ENE-negative 5 27.8% 3 13.6% 8 20.0%

ENE-positive 6 33.3% 10 45.5% 16 40.0%

Grading Well differentiated 1 5.6% 0 0.0% 1 2.5%

Moderately differentiated 8 44.4% 6 27.3% 14 35.0%

Poorly differentiated 9 50.0% 16 72.7% 25 62.5%

Undifferentiated 0 0.0% 0 0.0% 0 0.0%

Subsite BOT 4 22.2% 1 4.5% 5 12.5%

Soft palate 1 5.6% 0 0.0% 1 2.5%

Tonsil 13 72.2% 21 95.5% 34 85.0%

Smoking history Never smoker 1 5.6% 3 13.6% 4 10.0%

Former smoker 6 33.3% 12 54.5% 18 45.0%

Current smoker 11 61.1% 6 27.3% 17 42.5%

Missing 0 0.0% 1 4.5% 1 2.5%

Pack years (mean) 30 n.a. 20 n.a. 24.8 n.a.

Alcohol consumption Never 0 0.0% 1 4.5% 1 2.5%

Sometimes 5 27.8% 14 63.6% 19 47.5%

Daily 8 44.4% 4 18.2% 12 30.0%

Intensively daily 2 11.1% 0 0.0% 2 5.0%

Former heavy drinker 3 16.7% 2 9.1% 5 12.5%

Former consumption 0 0.0% 0 0.0% 0 0.0%

# Drinks per week (mean) 32 n.a. 23 n.a. 30 n.a.

pT pathological primary tumour classification, pN pathological nodal classification, R resection status, L lympangioinvasion, V vascular invasion, Pn perineural
invasion, HPV human papillomavirus, ENE extranodal extension, BOT base of tongue.
aOne patient did not receive a surgical resection, but preferred primary chemoradiation.
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The software AVAtar, previously developed at Ulm University [41], was
used to determine peptide combinations for the Top 5 HLA class I allotypes
of HLA-A, -B and -C using multiobjective optimisation of coverage for the
respective HLA allotype and the number of antigens selected as previously
described [41]. Tumour-exclusive peptides (TEP) found in ≥2 patients of a
certain class I allotype were filtered. These peptide candidates were
subjected to multiobjective optimisation with preset configurations and
1 × 106 iterations for the HLA allotypes with the highest prevalence in the
cohort. Each peptide that appeared in a selection underwent additional
quality control (QC) to ensure sufficient goodness and specificity of fit
between experimental and theoretical spectra. This entailed minimum
requirements for the number of peptide spectrum matches (PSMs ≥2), the
cross-correlation value (Xcorr ≥1.5) and the delta correlation score
between primary and the secondary sequence candidates (ΔCn ≥0.2). All
peptides appearing during the optimisation runs were considered
potential candidates for a peptide warehouse. In total, up to 3 optimisation
runs were performed if peptides in the selection had to be removed
after QC.

RESULTS
The HLA ligandome of oropharyngeal squamous cell
carcinomas (OPSCCs)
The OPSCC patient study cohort (n= 40) comprised a total of 49
different HLA class I allotypes, covering at least one HLA class I
allotype for 99.93% of individuals within the world’s population
(Supplementary Fig. 1A) [42, 43]. Most frequent alleles within the
patient cohort were HLA-A*02:01 (n= 25), HLA-A*01:01 (n= 15),
HLA-C*07:01 (n= 14), HLA-C*04:01 (n= 13) and HLA-B*51:01
(n= 12). For each class I Isotype (HLA-A, -B, -C), the top 5 alleles
were highlighted in Supplementary Fig. 2A–C and used for
multiobjective optimisation (compare below). The distribution of
HLA class I allele frequencies was representative for most alleles in
comparison to a German reference population (cohort “Germany
pop 8” (n= 39,689); www.allelefrequencies.net) [44]. In contrast,
the allele frequency of HLA-B*51:01 was significantly higher in
OPSCC patients compared to the reference cohort, respectively
(16.2% and 6.3%; p= 0.0005; OR= 2.9; 95% CI= 1.6–5.3) (Supple-
mentary Fig. 2A–C).
LC-MS/MS-based analysis of the HLA class I ligandomes isolated

from 40 OPSCC tissue samples identified a total of 22,769 unique
HLA class I ligands (range: 265–2854 peptides per sample; mean:
1338 peptides per sample) derived from 9485 different source
proteins (Fig. 1a and Supplementary Table 2) and, thereby,
obtaining 98% of the estimated maximum attainable coverage in
HLA ligand source proteins (Supplementary Fig. 1C). A weak
positive correlation between tissue sample masses and yields of
HLA class I ligands was observed (p= 0.0019; Pearson’s correlation
coefficient r= 0.4645; 95% confidence interval (CI)= 0.2–0.7)
(Fig. 1b). As expected, the majority of HLA class I ligands (70%)
exhibited a peptide length of 9 amino acids (Fig. 1d).
Thirty-three different HLA-DRB, 13 different HLA-DQB and 12

different HLA-DPB allotypes were comprised in the OPSCC patient
cohort, covering at least one HLA class II allotype in 99.99% of
individuals among the world’s population (Supplementary Fig. 1B)
[42, 43]. The most frequent alleles within the OPSCC cohort were
HLA-DPB1*04:01 (n= 23), HLA-DQB1*03:01 (n= 17), HLA-
DRB4*01:03 (n= 13) and HLA DPB1*03:01 (n= 12) in descending
order. The comparison of the HLA-DRB1 allelic prevalence in the
OPSCC patient cohort and a German reference population (cohort
“Germany pop 8” (n= 39,689), www.allelefrequencies.net) revealed
no significant differences in HLA class II allelic distribution
(Supplementary Fig. 2D) [44].
Mapping the HLA class II ligandomes of 40 OPSCC tissue samples

by LC-MS/MS revealed a total of 15,203 unique HLA class II-
presented peptides (range: 168–2086 peptides per sample; mean:
702 peptides per sample) from 4634 source proteins (Fig. 1a and
Supplementary Table 2), achieving a 74% coverage of the estimated
maximum attainable number of source proteins (Supplementary
Fig. 1D). A positive correlation of sample masses and yields of HLA

class II-presented peptides was shown (p < 0.0001; Pearson´s
correlation coefficient r= 0.6388; 95% CI= 0.4–0.8) (Fig. 1c).
Lengths of HLA class II-presented peptides were distributed across
the tolerated range of 8–25 amino acids, with 15 amino acids as the
most abundant peptide length (17%) (Fig. 1e).

OPSCC-associated HLA ligands
To identify OPSCC-associated antigens, comparative HLA class I
and class II ligandome profiling of the OPSCC cohort was
performed against a benign reference dataset. This dataset mainly
encompassed HLA ligandome data of a previously reported
haematological benign cohort [36], the benign tissue dataset
provided within the HLA Ligand Atlas [37] as well as a newly
established tonsillar HLA ligandome dataset from five healthy
control samples (Supplementary Table 3). Together, the benign
reference database contained HLA class I ligandome data from 35
haematological and non-haematological tissue types
(n= 424 samples) comprising a total of 153,733 unique HLA class
I-presented peptides derived from 17,200 different source
proteins. Overlap analysis between the OPSCC and the benign
reference datasets revealed 5336 HLA class I ligands presented
exclusively on OPSCC samples (Fig. 2a). 101 of these tumour-
exclusive peptides (TEP) were identified with a prevalence of ≥7.5
(≥3 samples) among the OPSCC patients. Three thousand two
hundred and fifty-one TEP were newly identified peptides not
present in our previously published solid tumour immunopepti-
domes (ovarian cancer [25], hepatocellular carcinoma [38], renal
cell carcinoma [39], glioblastoma [40]).
Regarding the HLA class II ligandomes, the benign reference

database was comprised of immunopeptidomic data from 33
haematological and non-haematological tissue types
(n= 369 samples) with a total of 156,940 unique HLA class II-
presented peptides derived from 16,035 source proteins. Overlap
analysis revealed 5466 OPSCC-exclusive HLA class II-presented
peptides (Fig. 2b). Eighty-two of these TEP were identified with a
prevalence of ≥7.5% (≥3 samples) among patients. Four thousand
eight hundred and thirty-seven TEP were newly identified peptides
that were not discovered in our previously published solid tumour
immunopeptidomes (ovarian cancer [25], renal cell carcinoma [39],
glioblastoma [40]).

HPV-associated HLA ligands
The present cohort contained 40 tumour samples originating from
22 HPV-positive and 18 HPV-negative patients. In none of the 40
OPSCC immunopeptidomes, HLA class I binders or HLA class II-
presented peptides were detected that derived from an HPV
source protein or from mutated neoantigens.
However, a supervised principal component analysis (PCA) and

corresponding heatmap based on the merged source proteins of
HLA class I ligands and of HLA class II-presented peptides resulted
in a clear separation of the samples into HPV-positive and HPV-
negative tumours (Supplementary Fig. 3). HLA class I binders and
HLA class II-presented peptides were identified that were either
shared or exclusively presented by HPV-positive or HPV-negative
OPSCC samples (Fig. 2c, d). Comparative analysis revealed 10,279
HLA class I ligands exclusive for HPV-positive and 5761 HLA class I
ligands exclusive HPV-negative OPSCCs derived from 5952 and
4231 source proteins, respectively. Among these, 653 HLA class I
ligands exclusive for HPV-positive and 190 HLA class I ligands
exclusive for HPV-negative OPSCCs were identified in ≥3 samples
of the respective subgroup.
Seven thousand two hundred and forty-eight HLA class II-

presented peptides exclusive for HPV-positive and 4720 exclusive
for HPV-negative OPSCCs were identified derived from 2859 and
2633 source proteins, respectively. Of these, 197 peptides
exclusive for HPV-positive and 88 peptides exclusive for HPV-
negative OPSCCs were detected in ≥3 samples of the respective
subgroups.
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These results indicate that immunopeptidomes of OPSCCs differ
in their composition of antigens depending on the patients’ HPV
status. This also applies to TEP as shown in Fig. 2e, f.
There were no significant differences in the number of total

and TEP or total and tumour-exclusive proteins per patient
compared by HPV status. The median number of HLA class I
binders per patient and TEP identified was 1317 (range:
265–2854) and 79.5 (range: 4–552), respectively, and the median
number of HLA class I ligand source proteins per patient and
tumour-exclusive source proteins was 1329 (range: 338–2444)
and 2 (range: 0–11), respectively. Medians with interquartile
range are graphed in Fig. 3a.
The median number of HLA class II peptides per patient and TEP

identified was 689.5 (range: 168–2086) and 99.5 (range: 20–608),

respectively, and themedian number of source proteins of HLA class
II-presented peptides per patient and tumour-exclusive source
proteins was 425.5 (range: 139–959) and 4 (range: 0–34),
respectively. Medians with interquartile range are graphed in Fig. 3b.

Establishment of OPSCC peptide warehouse
Multiobjective optimisation employing AVAtar [41] software was
used to uncover selections of HLA class I TEP by HLA class I
allotype with maximal coverage and a minimal number of
peptides for the above mentioned 15 HLA allotypes.
Central data from the optimisation and selection process are

shown in Supplementary Table 4. In total, 29 TEP were selected
for 11 HLA allotypes. For the remaining four allotypes,
contribution to coverage was negligible due to a low number
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of patients presenting the same TEP. The resulting selections of
TEP for each of the most frequent allotypes and the respective
source proteins are shown in Fig. 4 and Supplementary Table 5.
Only 2 HPV-positive patients did not present any of the 29 TEP.
The merged selections by HPV status are shown in Supplemen-
tary Fig. 4.
Multiobjective optimisation was also performed for HLA class II

TEP to identify a selection of TEP with maximal coverage using a
minimal number of peptides. From 71 HLA class II TEP that were
found in ≥3 patients, 57 peptides were eliminated during quality
control. Among the 14 HLA class II TEP, a selection of 9 TEP
resulted in the maximal coverage of 62.5% for all patients (HPV-
negative: 50%, HPV-positive: 72.7%). This selection and its
coverage by HPV status is shown in Supplementary Fig. 5.

Absolute and relative coverage of patients for each of the 11
HLA class I allotype specific TEP are shown in Fig. 5a, b,
respectively. The selections resulted in a coverage ranging from
100% for HLA-B*40:01 to 38.5% for HLA-C*07:01. The allotype-
specific selections covered ≥50% of patients with the respective
allele for HLA-B*40:01, HLA-A*01:01, HLA-B*51:01, HLA-A*24:02,
HLA-A*02:01 HLA-B*08:01 and HLA-B*44:02.
Next, a semi-personalised combination of HLA class I TEP was

selected for every patient based on the individual HLA typing results
to mimic a theoretical semi-personalised vaccine composition. These
semi-personalised HLA class I TEP combinations are shown in Fig. 5c
and resulted in a median of 9 selected HLA class I TEP per patient
(range: 2–19). A median of 2 HLA class I TEP among the semi-
personalised selected TEP were presented in the respective patient’s
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ligandome (range: 0–9), resulting in a median coverage of 28.14% of
the selected TEP combinations (range: 0–100%). Only three patients
did not present any of the semi-personalised TEP combinations.

Additionally, nine HLA class II TEP were identified covering
62.5% of the whole cohort (HPV-positive: 72.7%; HPV-negative:
50.0%) as shown in Fig. 5d.
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With the described HLA class I and II TEP selection, a warehouse
was established covering all OPSCC patients and offering potential
target peptides for immunotherapeutic approaches in the course
of OPSCC treatment.

DISCUSSION
Here, we present the first comprehensive analysis of the
immunopeptidome in an OPSCC cohort with a representative
distribution of HLA allotypes for the German population. Interest-
ingly, HLA-B*51:01 was significantly overrepresented in the OPSCC
cohort compared to a reference cohort. We identified OPSCC-
exclusive class I and class II peptides in each patient sample
including peptides shared by several patients with the respective
HLA allele. In total, >5000 OPSCC-exclusive class I ligands
and 5468 HLA class II-presented peptides respectively were
discovered, some of which were newly identified. A peptide
warehouse containing tumour-exclusive peptides (TEP) was
generated containing potential targets for immunotherapy of
OPSCC. None of the selected TEP were derived from previously
germline antigens, commonly overexpressed proteins, or onco-
genes. Instead, many TEP were derived from matrix proteins such
as collagens, keratins, fibronectin or plakophilin.
The respective significance of the different types of cancer

antigens for immunotherapy is currently unclear. An interesting
finding in two patients with cervical cancer treated with adoptive T
cell transfer with T cells primed for viral, HPV-specific antigens,
challenges the central role of viral antigens even for HPV-associated
disease [45]. Interestingly, the main portion of transfused immune
cells was not directed against the viral antigens that were used for
stimulation and expansion, but against a non-mutated germline
associated antigen or a mutation-associated neoantigen, respec-
tively. Thus, viral, mutational and non-mutated cancer antigens may
play a role in the recognition of OPSCC.
However in this analysis, none of the TEP was derived from an

HPV protein or a predicted, mutated neoantigen although HPV-
specific peptides and individual mutated neoantigens were
specifically queried in the dataset. This may be due to a lower
presentation level of peptides from such antigens in comparison
to other TEP. We cannot rule out that such peptides are presented
at levels undetectable with the sensitivity of MS applied in this
study. However, if they are presented, they are presented at much
lower levels than other TEP. No significant differences were found
between sample mass, the number of total peptides or TEP
presented by HPV status. These results indicate that the failure to
detect HPV peptides cannot be attributed to virally induced
reduction of HLA molecules on the tumour [46–48]. Nevertheless,
HPV-associated molecular differences like genetic, epigenetic or
transcriptomic alterations were also mirrored in the HLA
ligandome resulting in clustering of patient ligandome samples
according to HPV status.
Still, HPV-specific T cell immunity has been detected in HPV-

associated cancers and is associated with improved prognosis
[17, 18, 49–51]. Also, HPV-specific vaccines have been successful in
early clinical trials [52–55]. Thus, the integration of HPV-specific
antigens into a semi-personalised or personalised multiantigen
vaccine seems rational due to the high immunogenicity of viral
antigens.

Another open question is the optimal strategy for antigen
selection in vaccination trials: Should patients be selected based
on the presence of a certain antigen (antigen-dependent
enrolment) or are personalised, custom-manufactured vaccines
needed for each patient? Is there a role for multiantigen
vaccines developed for semi-personalised vaccination (i.e. an
antigen selection based upon the HLA type of the patient) and
statistically covering untested patients with at least one of the
selected antigens?
The number of individual and shared TEP identified is

promising and allows for both, a personalised and a semi-
personalised multiantigen vaccination strategy. The strategy
described here, is the definition and production of a warehouse
of HLA-specific peptide combinations covering a high propor-
tion of untested patients with the respective HLA type combined
by a TEP selection for HLA class II, both based on multiobjective
optimisation [41]. After immunogenicity testing, from this
warehouse, a semi-personalised vaccine will be tested com-
posed of the selection of peptide combinations for the
individual patient’s HLA type preferably in combination with
an HPV vaccine in HPV-positive patients. This strategy may reach
a coverage comparable with a personalised neoepitope vaccine
[16], avoiding the time and cost for individual analysis of the
patient’s tumour mutanome and manufacturing of a persona-
lised vaccine de novo.
Many past and ongoing trials in head and neck cancer focus on

neoadjuvant immunotherapy achieving a pathologically confirmed
immune response in a high fraction of patients [14, 56–61]. The
semi-personalised strategy makes neoadjuvant immune checkpoint
modulation combined with vaccination possible, which may further
increase response rates. The tumour material harvested during
surgery could potentially be used to optimise target antigen
selection for an adjuvant phase of immunotherapy. A similar
approach has been successfully employed in glioblastoma using a
warehouse-based HLA-adapted vaccine followed by personalised
vaccination [62].
In conclusion, the immunopeptidome of OPSCC differs by HPV

status although we found no HPV-specific peptides. Instead, a
number of TEP, some of which were found repeatedly, was
identified and was used to build a peptide warehouse for semi-
personalised vaccination as an addition to OPSCC immunother-
apy. A final validation of immunogenicity of the warehouse
peptides is needed before clinical application.
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