308 research outputs found

    Bedrock geology of southwest Iowa, Digital geologic map of Iowa, Phase 5: Southwest Iowa

    Get PDF
    https://ir.uiowa.edu/igs_ofm/1028/thumbnail.jp

    Bedrock geology of east-central Iowa, Digital geologic map of Iowa, Phase 6: East-Central Iowa

    Get PDF
    https://ir.uiowa.edu/igs_ofm/1029/thumbnail.jp

    Pulse wave velocity predicts mortality in renal transplant patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measuring arterial stiffness using pulse wave velocity (PWV) has become an important tool to assess vascular function and cardiovascular mortality. For subject with hypertension, end-stage renal disease and diabetes, PWV has been shown to predict cardiovascular and all-cause mortality. We hypothesize that PWV would also predict mortality in subjects who have undergone kidney transplantation.</p> <p>Methods</p> <p>A cohort of 330 patients with renal transplantation was studied with a mean age at entry 51.4 ± 0.75 years. Mean follow-up was 3.8 years (± 0.7 years); 16 deaths occurred during follow-up. At entry, together with standard clinical and biochemical parameters, PWV was determined from pressure tracing over carotid and femoral arteries.</p> <p>Results</p> <p>With increasing PWV, there was a significant increase in age, systolic blood pressure and pulse pressure. In addition, subjects with higher PWV also exhibited more frequently the presence of coronary heart disease. On the basis of Cox analyses, PWV and systolic blood pressure emerged as predictors of all-cause mortality.</p> <p>Conclusion</p> <p>These results provide evidence that PWV is a strong predictor of all-cause mortality in the population of renal transplant recipients.</p

    Potential for Geologic Sequestration of CO2 in Iowa

    Get PDF
    https://ir.uiowa.edu/igs_tis/1056/thumbnail.jp

    Bedrock geology of south-central Iowa, Digital geologic map of Iowa, Phase 4: South-Central Iowa

    Get PDF
    https://ir.uiowa.edu/igs_ofm/1024/thumbnail.jp

    Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Full text link
    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation

    An Expanded Stratigraphic Record of the Devonian-Carboniferous Boundary Hangenberg Biogeochemical Event from Southeast Iowa (U.S.A.)

    Get PDF
    The Devonian-Carboniferous boundary in the type area of the Mississippian subsystem (tri-state area of Iowa, Illinois, and Missouri) has been historically difficult to identify. Many of the localities contain similar lithologies and stratigraphic successions, but chronostratigraphic correlation of seemingly identical lithologies can vary greatly in this interval and frequently this has led to miscorrelation. In particular, the similar lithofacies that comprise the McCraney Formation and Louisiana Formation have been a source of stratigraphic confusion for over 100 years. To investigate the Devonian-Carboniferous boundary interval in the Mississippian type area we selected two localities in southeastern Iowa, the H-28 core from Lee County outside of Keokuk, Iowa, and the Starr’s Cave outcrop located near Burlington, Iowa. In total, 62 conodont samples and 299 carbonate carbon isotope samples were processed for this study and recorded the Hangenberg positive carbon isotope excursion and 25 conodont species, including a diverse assemblage of siphonodellids. The Hangenberg excursion is recorded in over 20 m of strata in southeast Iowa, making this one of the thickest stratigraphic records of this important biogeochemical event yet recovered, and helps to define more clearly the position of the base of the Carboniferous System in the region. These results show that the “McCraney” Fm. at the Starr’s Cave outcrop and the coeval carbonate unit in the H-28 core are both the Louisiana Formation, and calls into question the use of the name McCraney throughout the State of Iowa

    New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation in Kansas–Nebraska–Iowa from a Decade of Sponsored Research Activity

    Get PDF
    The Cretaceous Dakota Formation in the areas of Kansas, Nebraska, and Iowa contains a rich and well-preserved microflora of fossil palynomorphs. A comprehensive listing of these taxa is presented in this publication as part of a continuing effort to develop a refined biostratigraphic scheme for mid-Cretaceous terrestrial deposits in North America. The Dakota Formation in this region contains four distinctive Albian-Cenomanian palynostratigraphic zones that are used to partition the unit into successive depositional cycles, and each zone records deposition in fluvial-estuarine environments. The late Albian Kiowa-Skull Creek depositional cycle at the base of the Dakota Formation is recognized throughout the study area, and is also recognized in other parts of the Cretaceous North American Western Interior basin. The overlying newly recognized latest Albian "Muddy-Mowry Cycle" is formally defined for the first time in this paper and correlates with depositional cycles recognized by other workers in other parts of the Western Interior basin. The Cenomanian lower Greenhorn Cycle is already widely recognized by many other workers throughout the Western Interior basin. Laterally extensive thin zones of pervasive carbonate mineral cementation are noted in fluvial-estuarine deposits in the Dakota Formation. They are believed to have formed as synsedimentary cements that precipitated below estuarine marine-flooding surfaces in settings related to discharging paleoground waters. The existence of these early diagenetic cementation zones has important implications for the recognition of diagenetic barriers and baffles to modern fluid flow in the Dakota Formation. New stable isotopic data on these authigenic cements are reported in this paper and add to a body of published data on the δ18O of mid-Cretaceous paleoprecipitation in North America

    Bedrock geology of Linn County

    Get PDF
    https://ir.uiowa.edu/igs_ofm/1004/thumbnail.jp

    The pathogenesis of Charcot neuroarthropathy: current concepts

    Get PDF
    The pathogenesis of Charcot neuroarthropathy (CN) has been poorly understood by clinicians and scientists alike. Current researchers have made progress toward understanding the cause of CN and possible treatment options. The authors review the current literature on the pathogenesis of this debilitating disorder and attempt to explain the roles of inflammation, bone metabolism, and advanced glycation end products
    corecore