373 research outputs found
Targeted therapy in lymphoma
Discovery of new treatments for lymphoma that prolong survival and are less toxic than currently available agents represents an urgent unmet need. We now have a better understanding of the molecular pathogenesis of lymphoma, such as aberrant signal transduction pathways, which have led to the discovery and development of targeted therapeutics. The ubiquitin-proteasome and the Akt/mammalian target of rapamycin (mTOR) pathways are examples of pathological mechanisms that are being targeted in drug development efforts. Bortezomib (a small molecule protease inhibitor) and the mTOR inhibitors temsirolimus, everolimus, and ridaforolimus are some of the targeted therapies currently being studied in the treatment of aggressive, relapsed/refractory lymphoma. This review will discuss the rationale for and summarize the reported findings of initial and ongoing investigations of mTOR inhibitors and other small molecule targeted therapies in the treatment of lymphoma
Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma
Precision medicine is modernizing strategies for clinical study design to help improve diagnoses guiding individualized treatment based on genetic or phenotypic characteristics that discriminate between patients with similar clinical presentations. Methodology to personalize treatment choices is being increasingly employed in clinical trials, yielding favorable correlations with improved response rates and survival. In patients with diffuse large B-cell lymphoma (DLBCL), disease characteristics and outcomes may vary widely, underscoring the importance of patient classification through identification of sensitive prognostic features. The discovery of distinct DLBCL molecular subtypes based on cell of origin (COO) is redefining the prognosis and treatment of this heterogeneous cancer. Owing to significant molecular and clinical differences between activated B-cell-like (ABC)- and germinal center B-cell-like (GCB)-DLBCL subtypes, COO identification offers opportunities to optimize treatment selection. Widespread adoption of COO classification would greatly improve treatment and prognosis; however, limitations in interlaboratory concordance between immunohistochemistry techniques, cost, and availability of gene expression profiling tools undermine universal integration in the clinical setting. With advanced methodology to determine COO in a real-world clinical setting, therapies targeted to specific subtypes are under development. The focus here is to review applications of precision medicine exemplified by COO determination in DLBCL patients
Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma.
Deregulated mRNA translation has been implicated in disease development and in part is controlled by a eukaryotic initiation complex eIF4F (composed of eIF4E, eIF4G and eIF4A). We demonstrate here that the cap bound fraction from lymphoma cells was enriched with eIF4G and eIF4E indicating that lymphoma cells exist in an activated translational state. Moreover, 77% (110/142) of diffuse large B cell lymphoma tumors expressed eIF4E and this was associated with an inferior event free survival. Over-expression of wild-type eIF4E (eIF4E(WT)) but not cap-mutant eIF4E (eIF4E(cap mutant)) increased the activation of the eIF4F complex. Treatment with the active-site dual mTOR inhibitor CC214-1 reduced the level of the eIF4F complex by decreasing the cap bound fraction of eIF4G and increasing the levels of 4E-BP1. CC214-1 inhibited both the cap dependent and global protein translation. CC214-1 inhibited c-Myc, and cyclin D3 translation by decreasing polysomal fractions from lymphoma cells. Inhibition of eIF4E with shRNA further decreased the CC214-1 induced inhibition of the eIF4F complex, c-Myc, cyclin D3 translation, and colony formation. These studies demonstrate that the eIF4F complex is deregulated in aggressive lymphoma and that dual mTOR therapy has therapeutic potential in these patients
Monocyte response to SARS-CoV-2 protein ORF8 is associated with severe COVID-19 infection in patients with chronic lymphocytic leukemia
The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe COVID-19. We tested ORF8 ex vivo on peripheral blood mononuclear cells (PBMCs) from 26 anonymous healthy blood donors and measured intracellular cytokine/chemokine levels in monocytes by flow cytometry. The % monocytes staining positive in the sample and change in mean fluorescence intensity (ΔMFI) after ORF8 were used to calculate the adjusted MFI for each cytokine. We then tested pre-COVID-19 PBMC samples from 60 CLL patients who subsequently developed COVID-19 infection. Severe COVID-19 was defined as hospitalization due to COVID-19. In the 26 normal donor samples, the adjusted MFI for interleukin (IL)-1β, IL-6, IL-8, and CCL-2 were significantly different with ORF8 stimulation vs controls. We next analyzed monocytes from pre-COVID-19 PBMC samples from 60 CLL patients. The adjusted MFI to ORF8 stimulation of monocyte intracellular IL-1β was associated with severe COVID-19 and a reactive ORF8 monocyte response was defined as an IL- 1β adjusted MFI ≥ 0.18 (sensitivity 67%, specificity 75%). The median time to hospitalization after infection in CLL patients with a reactive ORF8 response was 12 days versus not reached for patients with a non-reactive ORF8 response with a hazard ratio of 7.7 (95% CI: 2.4-132, p=0.005). These results provide new insight on the monocyte inflammatory response to virus with implications in a broad range of disorders involving monocytes
Prognostic relevance of clonal hematopoiesis in myeloid neoplastic transformation in patients with follicular lymphoma treated with radioimmunotherapy
While novel radioisotope therapies continue to advance cancer care, reports of therapy-related myeloid neoplasms (t-MN) have generated concern. The prevalence and role of clonal hematopoiesis (CH) in this process remain to be defined. We hypothesized that: (i) CH is prevalent in relapsed follicular lymphoma and is associated with t-MN transformation, and (ii) radiation in the form of radioimmunotherapy (RIT) plays a role in clonal progression. In this retrospective cohort study, we evaluated the prevalence and prognostic impact of CH on clinical outcomes in 58 heavily pre-treated follicular lymphoma patients who received RIT. Patients had been given a median of four lines of therapy before RIT. The prevalence of CH prior to RIT was 46%, while it was 67% (P=0.15) during the course of RIT and subsequent therapies in the paired samples. Fourteen (24%) patients developed t-MN. Patients with t-MN had a higher variant allele fraction (38% vs. 15%; P=0.02) and clonal complexity (P=0.03) than those without. The spectrum of CH differed from that in age-related CH, with a high prevalence of DNA damage repair and response pathway mutations, absence of spliceosome mutations, and a paucity of signaling mutations. While there were no clear clinical associations between RIT and t-MN, or overall survival, patients with t-MN had a higher mutant clonal burden, along with extensive chromosomal abnormalities (median survival, afer t-MN diagnosis, 0.9 months). The baseline prevalence of CH was high, with an increase in prevalence on exposure to RIT and subsequent therapies. The high rates of t-MN with marked clonal complexities and extensive chromosomal damage underscore the importance of better identifying and studying genotoxic stressors accentuated by therapeutic modalities
Net Charge Fluctuations in Au + Au Interactions at sqrt(s_NN) = 130 GeV
Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the
PHENIX detector at RHIC, are used to investigate local net charge fluctuations
among particles produced near mid-rapidity. According to recent suggestions,
such fluctuations may carry information from the Quark Gluon Plasma. This
analysis shows that the fluctuations are dominated by a stochastic distribution
of particles, but are also sensitive to other effects, like global charge
conservation and resonance decays.Comment: 6 pages, RevTeX 3, 3 figures, 307 authors, submitted to Phys. Rev.
Lett. on 21 March, 2002. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (will be made) publicly
available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at sqrt(s_NN) = 130 GeV
Two particle azimuthal correlation functions are presented for charged
hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The
measurements permit determination of elliptic flow without event-by-event
estimation of the reaction plane. The extracted elliptic flow values v_2 show
significant sensitivity to both the collision centrality and the transverse
momenta of emitted hadrons, suggesting rapid thermalization and relatively
strong velocity fields. When scaled by the eccentricity of the collision zone,
epsilon, the scaled elliptic flow shows little or no dependence on centrality
for charged hadrons with relatively low p_T. A breakdown of this epsilon
scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most
central collisions.Comment: 6 pages, RevTeX 3, 4 figures, 307 authors, submitted to Phys. Rev.
Lett. on 11 April 2002. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (will be made) publicly
available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Measurement of the mid-rapidity transverse energy distribution from GeV Au+Au collisions at RHIC
The first measurement of energy produced transverse to the beam direction at
RHIC is presented. The mid-rapidity transverse energy density per participating
nucleon rises steadily with the number of participants, closely paralleling the
rise in charged-particle density, such that E_T / N_ch remains relatively
constant as a function of centrality. The energy density calculated via
Bjorken's prescription for the 2% most central Au+Au collisions at
sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of
1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).Comment: 307 authors, 6 pages, 4 figures, 1 table, submitted to PRL 4/18/2001;
revised version submitted to PRL 5/24/200
- …