1,563 research outputs found

    Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem

    Full text link
    We present a remarkable finding that a recently discovered [G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)] series of pulse sequences, designed to optimally restore coherence to a qubit in the spin-boson model of decoherence, is in fact completely model-independent and generically valid for arbitrary dephasing Hamiltonians given sufficiently short delay times between pulses. The series maximizes qubit fidelity versus number of applied pulses for sufficiently short delay times because the series, with each additional pulse, cancels successive orders of a time expansion for the fidelity decay. The "magical" universality of this property, which was not appreciated earlier, requires that a linearly growing set of "unknowns" (the delay times) must simultaneously satisfy an exponentially growing set of nonlinear equations that involve arbitrary dephasing Hamiltonian operators.Comment: Published in PRL, revise

    Ks- and Lp-band polarimetry on stellar and bow-shock sources in the Galactic center

    Full text link
    Infrared observations of the Galactic center (GC) provide a unique opportunity to study stellar and bow-shock polarization effects in a dusty environment. The goals of this work are to present new Ks- and Lp-band polarimetry on an unprecedented number of sources in the central parsec of the GC, thereby expanding our previous results in the H- and Ks-bands. We use AO-assisted Ks- and Lp-band observations, obtained at the ESO VLT. High precision photometry and the new polarimetric calibration method for NACO allow us to map the polarization in a region of 8" x 25" (Ks) resp. 26" x 28" (Lp). These are the first polarimetric observations of the GC in the Lp-band in 30 years, with vastly improved spatial resolution compared to previous results. This allows resolved polarimetry on bright bow-shock sources in this area for the first time at this wavelength. We find foreground polarization to be largely parallel to the Galactic plane (Ks-band: 6.1% at 20 degrees, Lp-band: 4.5% at 20 degrees, in good agreement with our previous findings and with older results. The previously described Lp-band excess in the foregound polarization towards the GC could be confirmed here for a much larger number of sources. The bow-shock sources contained in the FOV seem to show a different relation between the polarization in the observed wavelength bands than what was determined for the foreground. This points to the different relevant polarization mechanisms. The resolved polarization patterns of IRS 5 and 10W match the findings we presented earlier for IRS~1W. Additionally, intrinsic Lp-band polarization was measured for IRS 1W and 21, as well as for other, less prominent MIR-excess sources (IRS 2S, 2L, 5NE). The new data offer support for the presumed bow-shock nature of several of these sources (1W, 5, 5NE, 10W, 21) and for the model of bow-shock polarization presented in our last work.Comment: 19 pages, 18 figure

    Electron Spin Dephasing due to Hyperfine Interactions with a Nuclear Spin Bath

    Full text link
    We investigate pure dephasing decoherence (free induction decay and spin echo) of a spin qubit interacting with a nuclear spin bath. While for infinite magnetic field B the only decoherence mechanism is spectral diffusion due to dipolar flip-flops of nuclear spins, with decreasing B the hyperfine-mediated interactions between the nuclear spins become important. We give a theory of decoherence due to these interactions which takes advantage of their long-range nature. For a thermal uncorrelated bath we show that our theory is applicable down to B~10 mT, allowing for comparison with recent experiments in GaAs quantum dots.Comment: Published version, new title suggested by the PRL edito

    A formal method for identifying distinct states of variability in time-varying sources: SgrA* as an example

    Full text link
    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 um flux is observed from a source associated with SgrA*, and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available VLT data have been merged, we show that SgrA* is sufficiently described by a single intrinsic state. However the observed flux densities exhibit two states: a noise-dominated and a source-dominated one. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.Comment: Submitted to ApJ; 33 pages, 4 figures; comments welcom

    Concatenated dynamical decoupling in a solid-state spin bath

    Full text link
    Concatenated dynamical decoupling (CDD) pulse sequences hold much promise as a strategy to mitigate decoherence in quantum information processing. It is important to investigate the actual performance of these dynamical decoupling strategies in real systems that are promising qubit candidates. In this Rapid Communication, we compute the echo decay of concatenations of the Hahn echo sequence for a solid-state electronic spin qubit in a nuclear spin bath using a cluster expansion technique. We find that each level of concatenation reverses the effect of successive levels of intrabath fluctuations. On the one hand, this advances CDD as a versatile and realistic decoupling strategy. On the other hand, this invalidates, as overly optimistic, results of the simple pair approximation used previously to study restoration, through CDD, of coherence lost to a mesoscopic spin bath

    Quantum theory of spectral diffusion induced electron spin decoherence

    Full text link
    A quantum cluster expansion method is developed for the problem of localized electron spin decoherence due to dipolar fluctuations of lattice nuclear spins. At the lowest order it provides a microscopic explanation for the Lorentzian diffusion of Hahn echoes without resorting to any phenomenological Markovian assumption. Our numerical results show remarkable agreement with recent electron spin echo experiments in phosphorus doped silicon.Comment: 5 pages, 1 figur
    • 

    corecore