Infrared observations of the Galactic center (GC) provide a unique
opportunity to study stellar and bow-shock polarization effects in a dusty
environment. The goals of this work are to present new Ks- and Lp-band
polarimetry on an unprecedented number of sources in the central parsec of the
GC, thereby expanding our previous results in the H- and Ks-bands. We use
AO-assisted Ks- and Lp-band observations, obtained at the ESO VLT. High
precision photometry and the new polarimetric calibration method for NACO allow
us to map the polarization in a region of 8" x 25" (Ks) resp. 26" x 28" (Lp).
These are the first polarimetric observations of the GC in the Lp-band in 30
years, with vastly improved spatial resolution compared to previous results.
This allows resolved polarimetry on bright bow-shock sources in this area for
the first time at this wavelength. We find foreground polarization to be
largely parallel to the Galactic plane (Ks-band: 6.1% at 20 degrees, Lp-band:
4.5% at 20 degrees, in good agreement with our previous findings and with older
results. The previously described Lp-band excess in the foregound polarization
towards the GC could be confirmed here for a much larger number of sources. The
bow-shock sources contained in the FOV seem to show a different relation
between the polarization in the observed wavelength bands than what was
determined for the foreground. This points to the different relevant
polarization mechanisms. The resolved polarization patterns of IRS 5 and 10W
match the findings we presented earlier for IRS~1W. Additionally, intrinsic
Lp-band polarization was measured for IRS 1W and 21, as well as for other, less
prominent MIR-excess sources (IRS 2S, 2L, 5NE). The new data offer support for
the presumed bow-shock nature of several of these sources (1W, 5, 5NE, 10W, 21)
and for the model of bow-shock polarization presented in our last work.Comment: 19 pages, 18 figure