24 research outputs found

    Water uptake patterns of pea and barley responded to drought but not to cropping systems

    Full text link
    Agricultural production is under threat of water scarcity due to increasingly frequent and severe drought events under climate change. Whether a change in cropping systems can be used as an effective adaptation strategy against drought is still unclear. We investigated how plant water uptake patterns of a field-grown pea–barley (Pisum sativum L. and Hordeum vulgare L.) mixture, an important fodder intercrop, responded to experimental drought under four cropping systems, i.e. organic intensive tillage, conventional intensive tillage, conventional no tillage, and organic reduced tillage. Drought was simulated after crop establishment using rain shelters. Proportional contributions to plant water uptake from different soil layers were estimated based on stable water isotopes using Bayesian mixing models. Pea plants always took up proportionally more water from shallower depths than barley plants.Water uptake patterns of neither species were affected by cropping systems. Both species showed similar responses to the drought simulation and increased their proportional water uptake from the shallow soil layer (0–20 cm) in all cropping systems. Our results highlight the impact of drought on plant water uptake patterns for two important crop species and suggest that cropping systems might not be as successful as adaptation strategies against drought as previously thought

    Limited capability of organic farming and conservation tillage to enhance agroecosystem resilience to severe drought

    Full text link
    CONTEXT: Climate change increasingly threatens food security, particularly through prolonged phases of drought. It is therefore important to evaluate and develop arable cropping systems with an enhanced capability to withstand severe drought events to ensure food production. However, it is still poorly understood whether specific management strategies, in particular organic farming and conservation tillage that are thought to be more resilient to drought, can enhance the ability of agroecosystem to withstand drought. OBJECTIVE: The main objective of this study was, therefore, to test the ability of organic farming and conservation tillage practices to withstand drought within expected boundaries of climate scenarios for the end of the century. METHODS: This study summarizes the effects of drought (both natural and experimental) on the productivity of three arable crops (maize, pea-barley mixture and winter wheat) assessed in three consecutive years in a longterm cropping system field experiment. We tested whether four relevant cropping systems (i.e., conventional and organic with and without soil conservation tillage) differ in their ability to reduce the impact of drought on plant yield and crop performance. We studied conditions of moderate natural drought (summer 2018) and severe experimental droughts using rainout shelters (3 years) after 8 years of contrasting field management. RESULTS AND CONCLUSIONS: We found pronounced and consistent yield reductions due to experimental drought events for all cropping systems (34% for maize, 23% for pea-barley, and 17% for winter wheat). Drought induced yield reductions were largely similar across the four cropping systems, suggesting very limited capacity of any cropping system to buffer severe drought. Yet, there was an obvious but insignificant trend in maize in 2018 where under moderate and experimental drought conservation tillage resulted in a higher on-average yield compared to the plowed systems. Furthermore, drought resulted in lower nitrogen (N) uptake by the crops and a positive N budget, which could result in higher N losses after a drought period. SIGNIFICANCE: This study demonstrates that drought has consistent and adverse effects on crop productivity under conventional, organic and soil conservation arable cropping. It further demonstrates that it is difficult to find effective adaptation strategies for arable systems under realistic future scenarios and underlines the need to combine all available practices, from soil management to crop and cultivar choice, to mitigate drought impacts on crop productivity

    Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis

    Get PDF
    Reduced tillage is increasingly promoted to improve sustainability and productivity of agricultural systems. Nonetheless, adoption of reduced tillage by organic farmers has been slow due to concerns about nutrient supply, soil structure, and weeds that may limit yields. Here, we compiled the results from both published and unpublished research comparing deep or shallow inversion tillage, with various categories of reduced tillage under organic management. Shallow refers to less than 25 cm. We found that (1) division of reduced tillage practices into different classes with varying degrees of intensity allowed us to assess the trade-offs between reductions in tillage intensity, crop yields, weed incidence, and soil C stocks. (2) Reducing tillage intensity in organic systems reduced crop yields by an average of 7.6 % relative to deep inversion tillage with no significant reduction in yield relative to shallow inversion tillage. (3) Among the different classes of reduced tillage practice, shallow non-inversion tillage resulted in non-significant reductions in yield relative to deep inversion; whereas deep non-inversion tillage resulted in the largest yield reduction, of 11.6 %. (4) Using inversion tillage to only a shallow depth resulted in minimal reductions in yield, of 5.5 %, but significantly higher soil C stocks and better weed control. This finding suggests that this is a good option for organic farmers wanting to improve soil quality while minimizing impacts on yields. (5) Weeds were consistently higher, by about 50 %, when tillage intensity was reduced, although this did not always result in reduced yields

    Cover crops support ecological intensification of arable cropping systems

    No full text
    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.ISSN:2045-232

    A closer look at the functions behind ecosystem multifunctionality: A review

    Full text link
    In recent years there has been an upsurge of studies on ecosystem multifunctionality (EMF), or the ability of ecosystems to simultaneously provide multiple functions and/or services. The concept of EMF itself, the analytical approaches used to calculate it, and its implications depending on the spatial scale and field of study have been discussed in detail. However, to date there has been little dialogue concerning the basis of EMF studies: what should or should not be considered appropriate measures for ecosystem functions. To begin this discussion, we performed an in‐depth review of EMF studies across four major terrestrial ecosystems (agroecosystems, drylands, forests and grasslands) by analysing 82 studies, which together have assessed 775 ecosystem functions from a variety of field and greenhouse experiments across the globe. The number of ecosystem functions analysed varied from two to 82 per study and we found large differences in the distribution of functions across ecosystem types and ecosystem service categories. Furthermore, there was little explanation of why certain variables were included in the EMF calculation or how they relate to ecosystem functioning. Synthesis. Based on the literature analysis, it is clear that there is no general agreement regarding which measurements should or should not be considered functions in the field of ecology. To address this issue, we propose a general guideline for determining and measuring appropriate functions

    Interactive Effects of Subsidiary Crops and Weed Pressure in the Transition Period to Non-Inversion Tillage, A Case Study of Six Sites Across Northern and Central Europe

    Get PDF
    Reducing soil tillage can lead to many benefits, but this practice often increases weed abundance and thus the need for herbicides, especially during the transition phase from inversion tillage to non-inversion tillage. We evaluated if subsidiary crops (SCs, e.g., cover crops) can mitigate the effects of non-inversion tillage on weed abundance. Two-year experiments studying SC use, tillage intensity, and nitrogen (N) fertilization level were carried out twice at six sites throughout northern and central Europe. SCs significantly reduced weed cover throughout the intercrop period (−55% to −1% depending on site), but only slightly during the main crops. Overall weed abundance and weed biomass were higher when using non-inversion tillage with SCs compared to inversion tillage without SCs. The effects differed due to site-specific weed pressure and management. With increasing weed pressure, the effect of SCs decreased, and the advantage of inversion over non-inversion tillage increased. N fertilization level did not affect weed abundance. The results suggest that SCs can contribute by controlling weeds but cannot fully compensate for reduced weed control of non-inversion tillage in the transition phase. Using non-inversion tillage together with SCs is primarily recommended in low weed pressure environments.Interactive Effects of Subsidiary Crops and Weed Pressure in the Transition Period to Non-Inversion Tillage, A Case Study of Six Sites Across Northern and Central EuropepublishedVersio

    Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming.

    No full text
    BackgroundHarnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities.ResultsWhile microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an "effect size" for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members.ConclusionsUnderstanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management-e.g., to foster certain microbes with specific agricultural practices-a next step will be to identify the functional traits of the cropping sensitive microbes

    Erratum : Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming (Microbiome (2018) 6 1 (14))

    No full text
    Following publication of the original article [1], the authors reported that while the ordination graphs are all correct, the symbols in the legend are wrong
    corecore