47 research outputs found

    Herbivore Adaptations to Plant Cyanide Defenses

    Get PDF
    As plants are fixed to their habitat they produce specialized metabolites as chemical defenses to fight off herbivores. As an example, many plants produce cyanogenic glucosides and release toxic cyanide upon tissue damage (“cyanide bomb”). As a prerequisite for exploring cyanogenic plants as hosts, herbivores have evolved mechanisms to overcome cyanogenic defenses. Mammals metabolize cyanide to thiocyanate by rhodaneses. In arthropods, both rhodaneses and β-cyanoalanine synthases which transfer cyanide to cysteine contribute to cyanide detoxification. However, based on enzyme activity tests some arthropod species possess only one of these activities, and some possess both. Recently, cloning and characterization of first arthropod β-cyanoalanine synthases provided evidence for their involvement in cyanide detoxification. Phylogenetic analyses suggest that they have been recruited from microbial symbionts. Investigations with Zygaena filipendulae revealed that the avoidance of cyanide release is the primary mode of overcoming cyanide in this specialist. Some herbivores are able to sequester, de novo synthesize, and store cyanogenic glucosides for their defense and as nitrogen source. Thus, herbivores have evolved various mechanisms to counteract host plant cyanide defenses. These mechanisms are likely to have played a key role in the evolution of plant-herbivore interactions as well as in speciation and diversification of arthropods

    β-Cyanoalanine Synthases and Their Possible Role in Pierid Host Plant Adaptation

    Get PDF
    Cyanide is generated in larvae of the glucosinolate-specialist Pieris rapae (Lepidoptera:Pieridae) upon ingestion of plant material containing phenylalanine-derived glucosinolates as chemical defenses. As these glucosinolates were widespread within ancient Brassicales, the ability to detoxify cyanide may therefore have been essential for the host plant shift of Pierid species from Fabales to Brassicales species giving rise to the Pierinae subfamily. Previous research identified β-cyanoalanine and thiocyanate as products of cyanide detoxification in P. rapae larvae as well as three cDNAs encoding the β-cyanoalanine synthases PrBSAS1-PrBSAS3. Here, we analyzed a total of eight species of four lepidopteran families to test if their cyanide detoxification capacity correlates with their feeding specialization. We detected β-cyanoalanine synthase activity in gut protein extracts of all six species tested, which included Pierid species with glucosinolate-containing host plants, Pierids with other hosts, and other Lepidoptera with varying food specialization. Rhodanese activity was only scarcely detectable with the highest levels appearing in the two glucosinolate-feeding Pierids. We then amplified by polymerase chain reaction (PCR) 14 cDNAs encoding β-cyanoalanine synthases from seven species. Enzyme characterization and phylogenetic analysis indicated that lepidopterans are generally equipped with one PrBSAS2 homolog with high affinity for cyanide. A second β-cyanoalanine synthase which grouped with PrBSAS3 was restricted to Pierid species, while a third variant (i.e., homologs of PrBSAS1), was only present in members of the Pierinae subfamily. These results are in agreement with the hypothesis that the host shift to Brassicales was associated with the requirement for a specialized cyanide detoxification machinery

    Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae

    Get PDF
    The association of cabbage white butterflies (Pieris spec., Lepidoptera: Pieridae) with their glucosinolate-containing host plants represents a well-investigated example of the sequential evolution of plant defenses and insect herbivore counteradaptations. The defensive potential of glucosinolates, a group of amino acid-derived thioglucosides present in plants of the Brassicales order, arises mainly from their rapid breakdown upon tissue disruption resulting in formation of toxic isothiocyanates. Larvae of P. rapae are able to feed exclusively on glucosinolate-containing plants due to expression of a nitrile-specifier protein in their gut which redirects glucosinolate breakdown to the formation of nitriles. The release of equimolar amounts of cyanide upon further metabolism of the benzylglucosinolate-derived nitrile suggests that the larvae are also equipped with efficient means of cyanide detoxification such as β-cyanoalanine synthases or rhodaneses. While insect β-cyanoalanine synthases have recently been identified at the molecular level, no sequence information was available of characterized insect rhodaneses. Here, we identify and characterize two single-domain rhodaneses from P. rapae, PrTST1 and PrTST2. The enzymes differ in their kinetic properties, predicted subcellular localization and expression in P. rapae indicating different physiological roles. Phylogenetic analysis together with putative lepidopteran rhodanese sequences indicates an expansion of the rhodanese family in Pieridae

    Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown

    Get PDF
    Glucosinolates, a group of sulfur-rich thioglucosides found in plants of the order Brassicales, have attracted a lot of interest as chemical defenses of plants and health promoting substances in human diet. They are accumulated separately from their hydrolyzing enzymes, myrosinases, within the intact plant, but undergo myrosinase-catalyzed hydrolysis upon tissue disruption. This results in various biologically active products, e.g. isothiocyanates, simple nitriles, epithionitriles, and organic thiocyanates. While formation of isothiocyanates proceeds by a spontaneous rearrangement of the glucosinolate aglucone, aglucone conversion to the other products involves specifier proteins under physiological conditions. Specifier proteins appear to act with high specificity, but their exact roles and the structural bases of their specificity are presently unknown. Previous research identified the motif EXXXDXXXH as potential iron binding site required for activity, but crystal structures of recombinant specifier proteins lacked the iron cofactor. Here, we provide experimental evidence for the presence of iron (most likely Fe2+) in purified recombinant thiocyanate-forming protein from Thlaspi arvense (TaTFP) using a Ferene S-based photometric assay as well as Inductively Coupled Plasma-Mass Spectrometry. Iron binding and activity depend on E266, D270, and H274 suggesting a direct interaction of Fe2+ with these residues. Furthermore, we demonstrate presence of iron in epithiospecifier protein and nitrile-specifier protein 3 from Arabidopsis thaliana (AtESP and AtNSP3). We also present a homology model of AtNSP3. In agreement with this model, iron binding and activity of AtNSP3 depend on E386, D390, and H394. The homology model further suggests that the active site of AtNSP3 imposes fewer restrictions to the glucosinolate aglucone conformation than that of TaTFP and AtESP due to its larger size. This may explain why AtNSP3 does not support epithionitrile or thiocyanate formation, which likely requires exact positioning of the aglucone thiolate relative to the side chain

    NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0

    Get PDF
    One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70–80% of the nitrile-forming activity was due to NSP1 and NSP3. Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system

    The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance

    Get PDF
    The oviposition preference and larval performance of the diamondback moth (DBM), Plutella xylostella, was studied using Arabidopsis thaliana plants with modified glucosinolate (GS) profiles containing novel GSs as a result of the introduction of individual CYP79 genes. The insect parameters were determined in a series of bioassays. The GS content of the plants as well as the number of trichomes were measured. Multivariate analysis was used to determine the possible relationships among insect and plant variables. The novel GSs in the tested lines did not appear to have any unequivocal effect on the DBM. Instead, the plant characteristics that affected larval performance and larval preference did not influence oviposition preference. Trichomes did not affect oviposition, but influenced larval parameters negatively. Although the tested A. thaliana lines had earlier been shown to influence disease resistance, in this study no clear results were found for P. xylostella

    Glucosinolate research in the Arabidopsis era

    No full text
    The wide range of biological activities of products derived from the glucosinolate-myrosinase system is biologically and economically important. On the one hand, the degradation products of glucosinolates play an important role in the defence of plant

    Production of benzylglucosinolate in genetically engineered carrot suspension cultures.

    No full text
    Glucosinolates, a group of sulfur-containing specialized metabolites of the Brassicales, have attracted a lot of interest in nutrition, medicine and agriculture due to their positive health effects and their involvement in plant defense. Their biological activities and the extensive knowledge of their biosynthesis have inspired research into development of crops with enhanced glucosinolate contents as well as their biotechnological production in homologous and heterologous systems. Here, we provide proof-of-concept for transgenic suspension cultures of carrot (Daucus carota, Apiacae) as a scalable production platform for plant specialized metabolites using benzylglucosinolate as a model. Two T-DNAs carrying in total six genes of the benzylglucosinolate biosynthesis pathway from Arabidopsis thaliana as well as NPTII and BAR as selectable markers were transferred to carrot cells by Agrobacterium tumefaciens-mediated transformation. Putative transformants selected based on their kanamycin and BASTA resistances were subjected to HPLC-MS analysis. Of 79 putative transformants, 17 produced benzylglucosinolate. T-DNA-integration was confirmed for the five best producers. Callus from these transformants was used to establish suspension cultures for quantitative analysis. When grown in 60-ml-cultures, the best transformants produced roughly 2.5 nmol (g fw)-1 benzylglucosinolate, together with up to 10 nmol (g fw)-1 desulfobenzylglucosinolate. Only one transformant produced more benzylglucosinolate than desulfobenzylglucosinolate. The concentration of sulfate in the medium was not a major limiting factor. High production seemed to be associated with poor growth and vice versa. Therefore, future research should try to optimize medium and cultivation process and to separate growth and production phase by using an inducible promoter

    Glucosinolate Content in Dormant and Germinating Arabidopsis thaliana Seeds Is Affected by Non-Functional Alleles of Classical Myrosinase and Nitrile-Specifier Protein Genes

    No full text
    While the defensive function of glucosinolates is well established, their possible role as a nutrient reservoir is poorly understood and glucosinolate turnover pathways have not been elucidated. Previous research showed that glucosinolate content in germinating seeds of Arabidopsis thaliana Columbia-0 (Col-0) increases within the first two to four days on culture medium and then decreases below the level at day 0. In this study we used previously characterized T-DNA mutants to investigate if enzymes known to be involved in glucosinolate breakdown upon tissue damage affect the time course of glucosinolate content in germinating seeds. Besides dormant seeds, we analyzed seeds subjected to stratification in water for up to 72 h or germination on plates for up to ten days. Although seeds of tgg1 tgg2 (deficient in above-ground classical myrosinases) had higher glucosinolate levels than Col-0, the changes during germination were not different to those in seeds of Col-0. This demonstrates that TGG1/TGG2 are not responsible for the decline in glucosinolate content upon germination and suggests the involvement of other enzymes. Expression data extracted from publically available databases show a number of β-glucosidases of the BGLU18–BGLU33 clade to be expressed at specific time points of seed maturation and germination identifying them as good candidates for a role in glucosinolate turnover. Although nitrile-specifier proteins (NSPs) act downstream of myrosinases upon glucosinolate breakdown in tissue homogenates, mutants deficient in either seed-expressed NSP2 or seedling-expressed NSP1 were affected in glucosinolate content in seeds and during stratification or germination when compared to Col-0 indicating a direct role in turnover. The mutant lines nsp1-1, nsp2-1 and nsp2-2 had significantly higher glucosinolate levels in dry seeds than Col-0. After 24 h of stratification in water, nsp2-2 seeds contained 2.3 fold higher levels of glucosinolate than Col-0 seeds. This might indicate downregulation of hydrolytic enzymes when nitrile formation following glucosinolate hydrolysis is impaired. The time course of total glucosinolate content during ten days of germination depended on functional NSP1. Based on the present data, we propose a number of experiments that might aid in establishing the pathway(s) of glucosinolate turnover in germinating A. thaliana seeds
    corecore