9 research outputs found

    Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy

    Get PDF
    Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors. However, this approach risks enhancing normal tissue toxicity as much as tumor toxicity, thereby limiting its translational impact. Using NU5455, a newly identified highly selective oral inhibitor of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, we found that it was indeed possible to preferentially augment the effect of targeted radiotherapy on human orthotopic lung tumors without influencing acute DNA damage or a late radiation-induced toxicity (fibrosis) to normal mouse lung. Furthermore, while NU5455 administration increased both the efficacy and the toxicity of a parenterally administered topoisomerase inhibitor, it enhanced the activity of doxorubicin released locally in liver tumor xenografts without inducing any adverse effect. This strategy is particularly relevant to hepatocellular cancer, which is treated clinically with localized drug-eluting beads and for which DNA-PKcs activity is reported to confer resistance to treatment. We conclude that transient pharmacological inhibition of DNA-PKcs activity is effective and tolerable when combined with localized DNA-damaging therapies and thus has promising clinical potential

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Involvement of the L-Type Amino Acid Transporter Lat2 in the Transport of 3,3′-Diiodothyronine across the Plasma Membrane

    No full text
    Thyroid hormones are transported across cell membranes by transmembrane transporter proteins, for example by members of the monocarboxylate transporter (MCT) and the L-type amino acid transporter (LAT) families. LATs consist of a light chain (e.g. LAT2) and a heavy chain (CD98), which is essential for their cell surface expression and functionality. The specificity of Lat2 for thyroid hormones and their metabolites and its role in their transport was not fully clear. This fact motivated us to establish a cell system to elucidate the uptake of thyroid hormones and their metabolites by mouse Lat2. The coinjection of cRNA coding for Lat2 and CD98 into Xenopus laevis oocytes resulted in a markedly increased level of 3,3′-diiodo-L-thyronine (3,3′-T2) and to some extent also enhanced T3 transport. To gain insight into properties of thyroid hormones and their metabolites transported by Lat2, we inhibited 3,3′-T2 uptake by various iodothyronine derivatives. T1 and T2 derivatives as well as 2-aminobicyclo-[2, 2,1]-heptane-2-carboxylic acid strongly competed with 3,3′-T2 uptake. In addition, we performed T2 uptake measurements with the thyroid hormone-specific transporter MCT8. For both Lat2 and MCT8, Km values in a low micromolar range were calculated. We demonstrated that oocytes are a suitable system for thyroid hormone transport studies mediated by Lat2. Our data indicates that Lat2 compared to other thyroid hormone transporters prefers 3,3′-T2 as the substrate. Thus, Lat2 might contribute to the availability of thyroid hormone by importing and/or exporting 3,3′-T2, which is generated either by T3 inactivation or by rapid deiodinase 1-mediated rT3 degradation

    Differential regulation of G1 CDK complexes by the Hsp90-Cdc37 chaperone system

    Get PDF
    Selective recruitment of protein kinases to the Hsp90 system is mediated by the adaptor co-chaperone Cdc37. We show that assembly of CDK4 and CDK6 into protein complexes is differentially regulated by the Cdc37-Hsp90 system. Like other Hsp90 kinase clients, binding of CDK4/6 to Cdc37 is blocked by ATP-competitive inhibitors. Cdc37-Hsp90 relinquishes CDK6 to D3- and virus-type cyclins and to INK family CDK inhibitors, whereas CDK4 is relinquished to INKs but less readily to cyclins. p21CIP1 and p27KIP1 CDK inhibitors are less potent than the INKs at displacing CDK4 and CDK6 from Cdc37. However, they cooperate with the D-type cyclins to generate CDK4/6-containing ternary complexes that are resistant to cyclin D displacement by Cdc37, suggesting a molecular mechanism to explain the assembly factor activity ascribed to CIP/KIP family members. Overall, our data reveal multiple mechanisms whereby the Hsp90 system may control formation of CDK4- and CDK6-cyclin complexes under different cellular conditions

    MYC regulation of a “poor-prognosis” metastatic cancer cell state

    No full text
    Gene expression signatures are used in the clinic as prognostic tools to determine the risk of individual patients with localized breast tumors developing distant metastasis. We lack a clear understanding, however, of whether these correlative biomarkers link to a common biological network that regulates metastasis. We find that the c-MYC oncoprotein coordinately regulates the expression of 13 different “poor-outcome” cancer signatures. In addition, functional inactivation of MYC in human breast cancer cells specifically inhibits distant metastasis in vivo and invasive behavior in vitro of these cells. These results suggest that MYC oncogene activity (as marked by “poor-prognosis” signature expression) may be necessary for the translocation of poor-outcome human breast tumors to distant sites

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology

    No full text
    corecore