14 research outputs found

    Life Table Analysis for Immatures and Female Adults of the Predatory Beetle, Delphastus catalinae, Feeding on Whiteflies Under Three Constant Temperatures

    Get PDF
    Immature development and reproductive life history of Delphastus catalinae (Horn) (Coleoptera: Coccinellidae) feeding on Bemisia tabaci biotype B (Gennadius) (Homoptera: Aleyrodidae) (= B. argentifolii Bellows and Perring) immatures was studied at three constant temperatures: 22, 26 and 30 °C. Lower developmental threshold temperatures (T0) were estimated at 9 and 9.9 °C, for males and females, respectively. Female adults weighed slightly more than males (0.587 and 0.505 mg, respectively). As temperature increased from 22 to 30 °C, developmental time from eggs to eclosion of the adult declined from 24 to 15 days. Thermal units required for immature development was ∼300 degree-days. Percentage egg hatch declined at increasing temperatures, but no significant effect of time was found. The intrinsic rate of increase, r, increased from 0.048 to 0.082 and doubling time decreased from 14.44 to 8.45 days as temperature increased from 22 to 26 °C. Mean daily fecundity was modeled as a function of time and temperature to create a 3-dimensional surface. Overall, Delphastus catalinae was found to perform better at 22 and 26 °C while 30 °C was detrimental to immature development and adult reproduction

    Life Table Analysis for Immatures and Female Adults of the Predatory Beetle, Delphastus catalinae, Feeding on Whiteflies Under Three Constant Temperatures

    Get PDF
    Immature development and reproductive life history of Delphastus catalinae (Horn) (Coleoptera: Coccinellidae) feeding on Bemisia tabaci biotype B (Gennadius) (Homoptera: Aleyrodidae) (= B. argentifolii Bellows and Perring) immatures was studied at three constant temperatures: 22, 26 and 30 °C. Lower developmental threshold temperatures (T0) were estimated at 9 and 9.9 °C, for males and females, respectively. Female adults weighed slightly more than males (0.587 and 0.505 mg, respectively). As temperature increased from 22 to 30 °C, developmental time from eggs to eclosion of the adult declined from 24 to 15 days. Thermal units required for immature development was ∼300 degree-days. Percentage egg hatch declined at increasing temperatures, but no significant effect of time was found. The intrinsic rate of increase, r, increased from 0.048 to 0.082 and doubling time decreased from 14.44 to 8.45 days as temperature increased from 22 to 26 °C. Mean daily fecundity was modeled as a function of time and temperature to create a 3-dimensional surface. Overall, Delphastus catalinae was found to perform better at 22 and 26 °C while 30 °C was detrimental to immature development and adult reproduction

    Structural basis of histone H2A-H2B recognition by the essential chaperone FACT

    No full text
    Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair(1-6). Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module(7-10) embraces the alpha 1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization
    corecore