32 research outputs found

    Epithelial label-retaining cells are absent during tooth cycling in <i>Salmo salar</i> and <i>Polypterus senegalus</i>

    Get PDF
    The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement

    Compressed vertebrae in Atlantic salmon <i>Salmo salar</i>: evidence for metaplastic chondrogenesis as a skeletogenic response late in ontogeny

    Get PDF
    Anterior/posterior (a/p) compression of the vertebral column, referred to as 'short tails', is a recurring event in farmed Atlantic salmon. Like other skeletal deformities, the problem usually becomes evident in a late life phase, too late for preventive measures, making it difficult to understand the aetiology of the disease. We use structural, radiological, histological, and mineral analyses to study 'short tail' adult salmon and to demonstrate that the study of adult fish can provide important insights into earlier developmental processes. 'Short tails' display a/p compressed vertebrae throughout the spine, except for the first post-cranial vertebrae. The vertebral number is unaltered, but the intervertebral space is reduced and the vertebrae are shorter. Compressed vertebrae are characterized by an unchanged central part, altered vertebral end plates (straight instead of funnel-shaped), an atypical inward bending of the vertebral edges, and structural alterations in the intervertebral tissue. The spongiosa is unaffected. The growth zones of adjacent vertebrae fuse and blend towards the intervertebral space into chondrogenic tissue. This tissue produces different types of cartilage, replacing the notochord. The correspondence in location of intervertebral cartilage and deformed vertebral end plates, and the clearly delimited, unaltered, central vertebral parts suggest that the a/p compression of vertebral bodies is a late developmental disorder that may be related to a metaplastic shift of osteogenic tissue into chondrogenic tissue in the vertebral growth zone. Given the lack of evidence for infections, metabolic disorders and/or genetic disorders, we propose that an altered mechanical load could have caused the transformation of the bone growth zones and the concomitant replacement of the intervertebral (notochord) tissue by cartilaginous tissues in the 'short tails' studied here. This hypothesis is supported by the role that notochord cells are known to play in spine development and in maintaining the structure of the intervertebral disk

    Geometric K-Homology of Flat D-Branes

    Full text link
    We use the Baum-Douglas construction of K-homology to explicitly describe various aspects of D-branes in Type II superstring theory in the absence of background supergravity form fields. We rigorously derive various stability criteria for states of D-branes and show how standard bound state constructions are naturally realized directly in terms of topological K-cycles. We formulate the mechanism of flux stabilization in terms of the K-homology of non-trivial fibre bundles. Along the way we derive a number of new mathematical results in topological K-homology of independent interest.Comment: 45 pages; v2: References added; v3: Some substantial revision and corrections, main results unchanged but presentation improved, references added; to be published in Communications in Mathematical Physic

    A comparative histological study of the osteoderms in the lizards Heloderma suspectum (Squamata: Helodermatidae) and Varanus komodoensis (Squamata: Varanidae)

    Get PDF
    This is the peer reviewed version of the following article: Kirby, A, Vickaryous, M, Boyde, A, et al. A comparative histological study of the osteoderms in the lizards Heloderma suspectum (Squamata: Helodermatidae) and Varanus komodoensis (Squamata: Varanidae). J Anat. 2020; 00: 1– 9. https://doi.org/10.1111/taja.13156 which has been published in final form at https://doi.org/10.1111/taja.13156

    Supersymmetry in carbon nanotubes in a transverse magnetic field

    Full text link
    Electron properties of Carbon nanotubes in a transverse magnetic field are studied using a model of a massless Dirac particle on a cylinder. The problem possesses supersymmetry which protects low energy states and ensures stability of the metallic behavior in arbitrarily large fields. In metallic tubes we find suppression of the Fermi velocity at half-filling and enhancement of the density of states. In semiconducting tubes the energy gap is suppressed. These features qualitatively persist (although to a smaller degree) in the presence of electron interactions. The possibilities of experimental observation of these effects are discussed.Comment: A new section on electron interaction effects added and explanation on roles of supersymmetry expanded. Revtex4, 6 EPS figure file

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Not All Bones are Created Equal - Using Zebrafish and Other Teleost Species in Osteogenesis Research

    No full text
    Developmental osteogenesis and pathologies of mineralized tissues are areas of intense investigations in the mammalian field, but different from other areas of organ formation and developmental biology, zebrafish have been somewhat slow in joining the area of bone research. In recent years, however, genetic screens have provided a number of exciting mutants, and transgenic lines have been developed that permit visualization of osteoblasts and osteoclasts in vivo. We here review some of the recent literature and provide examples where insights from studies in zebrafish have complemented the information available from mammalian models or clinical studies. Furthermore, we provide a comparative overview about different forms of bone within the teleost lineage, and between teleosts and mammal
    corecore