86 research outputs found

    Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    Get PDF
    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals

    Peptiderge Modulation des NMDA-Rezeptoren am Beispiel von gp120 und Conantokin-G

    No full text

    Interdisziplinäre OSCE-Arbeitsgruppe Frankfurt

    No full text

    Subunit-dependent inhibition of recombinant rodent N-methyl-D-aspartate receptors by a HIV-1 glycoprotein 120 derived peptide.

    No full text
    Considerable evidence suggests that low (picomolar) concentrations of the HIV-1 envelope glycoprotein gp120 induce neuronal cell death by stimulating the release of microglial toxins, which in turn activate N-methyl-D-aspartate (NMDA) receptors. Conversely, high (micromolar) concentrations of gp120 have been reported to directly inhibit NMDA receptor-mediated currents and do not induce neurotoxicity. Here we show that micromolar concentrations of a synthetic peptide corresponding to the V3-loop of gp120 (V3-pep) inhibited agonist responses of recombinant heteromeric rodent NMDA receptors expressed in Xenopus laevis oocytes by decreasing their apparent glycine affinity. Different combinations of NMDA receptor subunits displayed differential sensitivities to inhibition by V3-pep, with a potency rank order of NR1/2B > NR1/2D > NR1/2C > or = NR1/2A. Our observations may provide an explanation for the reduced neurotoxicity of high doses of gp120 in cell cultures and may be useful for the pharmacological discrimination of NMDA receptor subtypes

    Interdisziplinäre Behandlung von Kindern mit angeborenen Fehlbildungen

    No full text

    Neonatologie als vorklinisches Wahlfach - Erfahrungen und Chancen

    No full text
    corecore