8,014 research outputs found

    Tidal interaction of a rotating 1 Msun star with a binary companion

    Get PDF
    We calculate the tidal torque on a uniformly rotating 1 Msun star at various stages of core hydrogen burning by an orbiting companion. We apply the `traditional approximation' and solve the radial part of the tidal perturbations by matrix inversion of the set of finite difference equations on a very fine grid. We have identified resonances with gravity- and quasi-toroidal modes with up to 1000 radial nodes in the more evolved stellar models. For low forcing frequencies we find significant tidal response due to viscous damping of inertial modes in the convective envelope of the solar-type star. We conclude that effects due to stellar rotation (including resonance locking) may considerably enhance the speed of tidal evolution in solar-type stars.Comment: accepted for publ. in A&A, 11 pages, 6 figure

    Tidal evolution of eccentric orbits in massive binary systems; a study of resonance locking

    Get PDF
    We study the tidal evolution of a binary system consisting of a 1.4 Msun compact object in elliptic orbit about a 10 Msun uniformly rotating main sequence star for various values of the initial orbital parameters. We apply our previously published results of 2D non-adiabatic calculations of the non-radial g- and r-mode oscillations of the uniformly rotating MS star, and include the effects of resonant excitation of these modes in the tidal evolution calculations. A high orbital eccentricity enhances the effectiveness of the tidal interaction because of the large number of harmonic components of the tidal potential and the reduced orbital separation near periastron. By including the evolution of the MS star, especially of its rotation rate, many resonance crossings occur with enhanced tidal interaction. We analyse the phenomenon of resonance locking whereby a particular tidal harmonic is kept resonant with a stellar oscillation mode. Resonance locking of prograde g-modes appears an effective mechanism for orbital circularization of eccentric orbits. We consider the orbital evolution of the binary pulsar PSR J0045-7319 and conclude that resonance locking could explain the observed short orbital decay time of this system if the B-star spins in the direction counter to the orbital motion.Comment: 21 pages, 11 figures; some at reduced resolution, accepted for publication in A&

    The use of ERTS-1 to more fully utilize and apply marine station data to the study and productivity along the eastern shelf waters of the United States

    Get PDF
    The author has identified the following significant results. Sea truth data were obtained during two ERTS overpasses in waters near the entrance of the Chesapeake Bay. Correlations were made between total phytoplankton and chlorophyll values in these waters to radiance detected by ERTS in an effort to map areas of similar productivity levels. Band 4 radiance had the highest correlation to all parameters with bands 5 and 6 showing decreasing correlations in each case. The radiance values were apparently influenced by one or more factors, most likely including the sediment content of the water. Data have shown that ERTS MSS is not suitable for monitoring chlorophyll in near-shore waters where sediment loads are high. It is suggested that in more seaward or pelagic locations, that ERTS MSS would be more efficient in monitoring surface chlorophyll values and establishing direct relationships to phytoplankton concentrations

    Negotiating An Indian Water Rights Settlement: The Colorado Ute Indian Experience

    Get PDF
    28 pages

    Heat transfer characteristics of an emergent strand

    Get PDF
    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed
    corecore