6 research outputs found

    Carbon ionization at Gbar pressures: an ab initio perspective on astrophysical high-density plasmas

    Full text link
    A realistic description of partially-ionized matter in extreme thermodynamic states is critical to model the interior and evolution of the multiplicity of high-density astrophysical objects. Current predictions of its essential property, the ionization degree, rely widely on analytical approximations that have been challenged recently by a series of experiments. Here, we propose a novel ab initio approach to calculate the ionization degree directly from the dynamic electrical conductivity using the Thomas-Reiche-Kuhn sum rule. This Density Functional Theory framework captures genuinely the condensed matter nature and quantum effects typical for strongly-correlated plasmas. We demonstrate this new capability for carbon and hydrocarbon, which most notably serve as ablator materials in inertial confinement fusion experiments aiming at recreating stellar conditions. We find a significantly higher carbon ionization degree than predicted by commonly used models, yet validating the qualitative behavior of the average atom model Purgatorio. Additionally, we find the carbon ionization state to remain unchanged in the environment of fully-ionized hydrogen. Our results will not only serve as benchmark for traditional models, but more importantly provide an experimentally accessible quantity in the form of the electrical conductivity.Comment: accepted for publication in Physical Review Researc

    The Speed of Sound in Methane under Conditions of the Thermal Boundary Layer of Uranus

    Full text link
    We present the first direct observations of acoustic waves in warm dense matter. We analyze wavenumber- and energy-resolved X-ray spectra taken from warm dense methane created by laser-heating a cryogenic liquid jet. X-ray diffraction and inelastic free electron scattering yield sample conditions of 0.3±\pm0.1 eV and 0.8±\pm0.1 g/cm3^3, corresponding to a pressure of \sim13 GPa and matching the conditions predicted in the thermal boundary layer between the inner and outer envelope of Uranus. Inelastic X-ray scattering was used to observe the collective oscillations of the ions. With a highly improved energy resolution of \sim50 meV, we could clearly distinguish the Brillouin peaks from the quasi-elastic Rayleigh feature. Data at different wavenumbers were used to obtain a sound speed of 5.9±\pm0.5 km/s, which enabled us to validate the use of Birch's law in this new parameter regime.Comment: 7 pages, 4 figures with supplementary informatio

    PuK im Planungs- und Kontrollsystem von Unternehmungen mit primär verrichtungs-orientierter (funktionaler) Aufbauorganisation

    No full text

    The Mononuclear Molybdenum Enzymes

    No full text
    corecore