53 research outputs found

    Critical role of interlayer dimer correlations in the superconductivity of La3_3Ni2_2O7_7

    Full text link
    The recent discovery of superconductivity in La3_3Ni2_2O7_7 with Tc80 KT_\mathrm{c} \simeq 80~\mathrm{K} under high pressure opens up a new route to high-TcT_\mathrm{c} superconductivity. This material realizes a bilayer square lattice model featuring a strong interlayer hybridization unlike many unconventional superconductors. A key question in this regard concerns how electronic correlations driven by the interlayer hybridization affect the low-energy electronic structure and the concomitant superconductivity. Here, we demonstrate using a cluster dynamical mean-field theory that the interlayer electronic correlations (IECs) induce a Lifshitz transition resulting in a change of Fermi surface topology. By solving an appropriate gap equation, we further show that the dominant pairing instability (intraorbital ss-wave/interorbital dx2y2d_{x^2-y^2}-wave) is enhanced by the IECs. The underlying mechanism is the quenching of a strong ferromagnetic channel, resulting from the Lifshitz transition driven by the IECs. Our finding establishes the role of IECs in La3_3Ni2_2O7_7 and potentially paves the way to designing higher-\Tc nickelates

    No superconductivity in Pb9_9Cu1_1(PO4_4)6_6O found in orbital and spin fluctuation exchange calculations

    Get PDF
    Finding a material that turns superconducting under ambient conditions has been the goal of over a century of research, and recently Pb10x_{10-x}Cux_x(PO4_4)6_6O aka LK-99 has been put forward as a possible contestant. In this work, we study the possibility of electronically driven superconductivity in LK-99 also allowing for electron or hole doping. We use an ab initio\textit{ab initio} derived two-band model of the Cu ege_g orbitals for which we determine interaction values from the constrained random phase approximation (cRPA). For this two-band model we perform calculations in the fluctuation exchange (FLEX) approach to assess the strength of orbital and spin fluctuations. We scan over a broad range of parameters and enforce no magnetic or orbital symmetry breaking. Even under optimized conditions for superconductivity, spin and orbital fluctuations turn out to be too weak for superconductivity anywhere near to room-temperature. We contrast this finding to non-self-consistent RPA, where it is possible to induce spin-singlet dd-wave superconductivity at Tc300T_{\mathrm{c}}\geq300 K if the system is put close enough to a magnetic instability.Comment: 6 pages, 3 figure

    Coherence length and penetration depth in strongly correlated superconductors

    Full text link
    Superconductivity emerges from the spatial coherence of a macroscopic condensate characterized by two intrinsic length scales: the coherence length ξ0\xi_0 and the London penetration depth λL\lambda_{\mathrm{L}}. While their description is well established in weak-coupling Bardeen-Cooper-Schrieffer (BCS) theory and Eliashberg theory, ξ0\xi_0 and λL\lambda_{\mathrm{L}} are generally unknown quantities in strongly correlated superconductors. In this work, we establish a framework to calculate these length scales in microscopic theories and from first principles. Central to this idea are Nambu-Gor'kov Green functions under a constraint of finite-momentum pairing and their analysis with respect to the superconducting order parameter and resultant supercurrents. We illustrate with a multi-orbital model of alkali-doped fullerides (A3_3C60_{60}) using Dynamical Mean-Field Theory (DMFT) how proximity of superconductivity, Jahn-Teller metallic, and Mott-localized states impact superconducting coherence, order parameter stiffness, and critical temperature. Our analysis reveals a "localized" superconducting regime with robustly short ξ0\xi_0. Multi-orbital effects cause a domeless rise in the critical temperature as the pairing interaction is increased, setting this system apart from the BCS to Bose-Einstein-Condensate (BEC) crossover phenomenology.Comment: main: 12 pages, 3 figures | SM: 19, 6 figure

    UV to radio centimetric spectral energy distributions of optically-selected late-type galaxies in the Virgo cluster

    Get PDF
    We present a multifrequency dataset for an optically-selected, volume-limited, complete sample of 118 late-type galaxies (>= S0a) in the Virgo cluster. The database includes UV, visible, near-IR, mid-IR, far-IR, radio continuum photometric data as well as spectroscopic data of Halpha, CO and HI lines, homogeneously reduced, obtained from our own observations or compiled from the literature. Assuming the energy balance between the absorbed stellar light and that radiated in the IR by dust, we calibarte an empirical attenuation law suitable for correcting photometric and spectroscopic data of normal galaxies. The data, corrected for internal extinction, are used to construct the spectral energy distribution (SED) of each individual galaxy, and combined to trace the median SED of galaxies in various classes of morphological type and luminosity. Low-luminosity, dwarf galaxies have on average bluer stellar continua and higher far-IR luminosities per unit galaxy mass than giant, early-type spirals. If compared to nearby starburst galaxies such as M82 and Arp 220, normal spirals have relatively similar observed stellar spectra but 10-100 times lower IR luminosities. The temperature of the cold dust component increases with the far-IR luminosity, from giant spirals to dwarf irregulars. The SED are used to separate the stellar emission from the dust emission in the mid-IR regime. We show that the contribution of the stellar emission at 6.75 micron to the total emission of galaxies is generally important, from ~ 80% in Sa to ~ 20% in Sc.Comment: 31 pages, 12 figures, 12 tables. Fig 2 avaliable at (http://goldmine.mib.infn.it/papers/isosed.html). Accepted for publication on A&

    High-resolution radio continuum survey of M33 II. Thermal and nonthermal emission

    Full text link
    We determine the variation in the nonthermal radio spectral index in the nearby spiral galaxy M33 at a linear resolution of 360 pc. We separate the thermal and nonthermal components of the radio continuum emission without the assumption of a constant nonthermal spectral index. Using the Spitzer FIR data at 70 and 160 μ\mum and a standard dust model, we deredden the Hα\alpha emission. The extinction corrected Hα\alpha emission serves as a template for the thermal free-free radio emission. Subtracting from the observed 3.6 cm and 20 cm emission (Effelsberg and the VLA) this free-free emission, we obtain the nonthermal maps. A constant electron temperature used to obtain the thermal radio intensity seems appropriate for M~33 which, unlike the Milky Way, has a shallow metallicity gradient. For the first time, we derive the distribution of the nonthermal spectral index across a galaxy, M33. We detect strong nonthermal emission from the spiral arms and star-forming regions. Wavelet analysis shows that at 3.6 cm the nonthermal emission is dominated by contributions from star-forming regions, while it is smoothly distributed at 20 cm. For the whole galaxy, we obtain thermal fractions of 51% and 18% at 3.6 cm and 20 cm, respectively. The thermal emission is slightly stronger in the southern than in the northern half of the galaxy. We find a clear radial gradient of mean extinction in the galactic plane. The nonthermal spectral index map indicates that the relativistic electrons suffer energy-loss when diffusing from their origin in star-forming regions towards interarm regions and the outer parts of the galaxy. We also conclude that the radio emission is mostly nonthermal at R >> 5 kpc in M33.Comment: 15 pages, 14 figures, accepted for publication in the Astronomy and Astrophysics journa

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    Get PDF
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twenty-five patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2M-mutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2M-mutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    Get PDF
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twentyfive patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2Mmutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2Mmutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis–induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs
    corecore