260 research outputs found

    Effects of Human Apolipoprotein E3 and E4 Genotypes on Cardiometabolic Disease Risk

    Get PDF
    Apolipoprotein (apo) E isoforms have specific effects on the etiology of cardiovascular disease (CVD), but data is limited on the effects of these genotypes for the risk of type 2 diabetes mellitus (T2DM) and related cardiometabolic alterations. The purpose of this study was to determine the effects of human apoE3 and E4 genotypes on risk factors for T2DM and cardiac metabolism. Cardiac tissue from human apoE3 (n=8) and E4 (n=8) knock-in (KI) mice were compared to lean (n=11) and diet-induced obese (n=12) B6D2F1 mice to characterize the cardiac metabolic activity of AMPK, as well as for lipid and glycogen levels. Plasma was analyzed for lipid and lipoprotein concentrations, as well as glucose, insulin and HOMA-IR. An ANOVA was used to identify differences between groups. Statistical significance was set at a P\u3c0.05. ApoE3 and E4 mice displayed mild insulin resistance (Table 1) despite for having a body mass similar to the lean mice. In addition, apoE3 mice had a 1.5 fold greater HOMA-IR than apoE4 mice. Interestingly, apoE3 and E4 mice had significantly lower TC, Tg and HDL-C than both lean and obese mice. In apoE3 mice, nonHDL-C was significantly lower than both the lean and obese mice and the apoE4 mice. In apoE3 mice, cardiac cholesterol was greater than both lean and obese controls and apoE4 mice. In contrast, apoE4 mice had 2.5 and 2.9 fold greater cardiac triglyceride levels than the lean and obese mice, respectively. In the absence of an obesogenic diet, apoE3 and E4 mice displayed an insulin resistant metabolic state combined with altered lipid and lipoprotein metabolism that paralleled an increase in cardiac lipid deposition. These alterations in cardiac metabolism may contribute to the increased risk of CVD observed in apoE3 and E4 genotypes

    A falling of the veils: turning points and momentous turning points in leadership and the creation of CSR

    Get PDF
    This article uses the life stories approach to leadership and leadership development. Using exploratory, qualitative data from a Forbes Global 2000 and FTSE 100 company, we discuss the role of the turning point (TP) as an important antecedent of leadership in corporate social responsibility. We argue that TPs are causally efficacious, linking them to the development of life narratives concerned with an evolving sense of personal identity. Using both a multi-disciplinary perspective and a multi-level focus on CSR leadership, we identify four narrative cases. We propose that they helped to re-define individuals’ sense of self and in some extreme cases completely transformed their self-identity as leaders of CSR. Hence we also distinguish the momentous turning point (MTP) that created a seismic shift in personality, through re-evaluation of the individuals’ personal values. We argue that whilst TPs are developmental experiences that can produce responsible leadership, the MTP changes the individuals’ personal priorities in life to produce responsible leadership that perhaps did not exist previously. Thus we appropriate Maslow’s (1976, p. 77) metaphorical phrase ‘A falling of the veils’ from his discussion of peak and desolation experiences that produce personal growth. Using a multi-disciplinary literature from social theory (Archer, 2012) moral psychology (Narvaez, 2009) and social psychology (Schwartz, 2010), we present a theoretical model that illustrates the psychological process of the (M)TP, thus contributing to the growing literature on the microfoundations of CSR

    Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours

    Get PDF
    Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy

    The NANOGrav 12.5 yr Data Set: A Computationally Efficient Eccentric Binary Search Pipeline and Constraints on an Eccentric Supermassive Binary Candidate in 3C 66B

    Get PDF
    The radio galaxy 3C 66B has been hypothesized to host a supermassive black hole binary (SMBHB) at its center based on electromagnetic observations. Its apparent 1.05 yr period and low redshift (∼0.02) make it an interesting testbed to search for low-frequency gravitational waves (GWs) using pulsar timing array (PTA) experiments. This source has been subjected to multiple searches for continuous GWs from a circular SMBHB, resulting in progressively more stringent constraints on its GW amplitude and chirp mass. In this paper, we develop a pipeline for performing Bayesian targeted searches for eccentric SMBHBs in PTA data sets, and test its efficacy by applying it to simulated data sets with varying injected signal strengths. We also search for a realistic eccentric SMBHB source in 3C 66B using the NANOGrav 12.5 yr data set employing PTA signal models containing Earth term-only as well as Earth+pulsar term contributions using this pipeline. Due to limitations in our PTA signal model, we get meaningful results only when the initial eccentricity e 0 < 0.5 and the symmetric mass ratio η > 0.1. We find no evidence for an eccentric SMBHB signal in our data, and therefore place 95% upper limits on the PTA signal amplitude of 88.1 ± 3.7 ns for the Earth term-only and 81.74 ± 0.86 ns for the Earth+pulsar term searches for e 0 < 0.5 and η > 0.1. Similar 95% upper limits on the chirp mass are (1.98 ± 0.05) × 109 and (1.81 ± 0.01) × 109 M ☉. These upper limits, while less stringent than those calculated from a circular binary search in the NANOGrav 12.5 yr data set, are consistent with the SMBHB model of 3C 66B developed from electromagnetic observations

    The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background

    Get PDF
    Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis

    The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background

    Full text link
    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational wave background (GWB) in its 15 yr dataset. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy, and place a Bayesian 95%95\% upper limit on the level of broadband anisotropy such that (Cl>0/Cl=0)<20%(C_{l>0} / C_{l=0}) < 20\%. We also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems using astrophysical simulations conditioned on the isotropic GWB inferred in the 15-yr dataset, and show that this dataset has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data.Comment: 19 pages, 11 figures; submitted to Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    The NANOGrav 15-Year Data Set: Detector Characterization and Noise Budget

    Get PDF
    Pulsar timing arrays (PTAs) are galactic-scale gravitational wave detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency gravitational wave (GW) signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15-year data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white noise parameters and two red noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise-ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7×10−157\times 10^{-15} at 5 nHz. A power law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav's 15-year GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.Comment: 67 pages, 73 figures, 3 tables; published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background

    Full text link
    Recently we found compelling evidence for a gravitational wave background with Hellings and Downs (HD) correlations in our 15-year data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes which produce different interpulsar correlations. In this work we search the NANOGrav 15-year data set for evidence of a gravitational wave background with quadrupolar Hellings and Downs (HD) and Scalar Transverse (ST) correlations. We find that HD correlations are the best fit to the data, and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2\sim 2 when comparing HD to ST correlations, and ∼1\sim 1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise-ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise-ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise-ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.Comment: 11 pages, 5 figure
    • …
    corecore