36 research outputs found

    Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms.

    Get PDF
    Interstitial pulmonary fibrosis induced by intratracheal instillation of bleomycin (BL) involves an excess production of reactive oxygen species, unavailability of adequate levels of NAD and ATP to repair the injured pulmonary epithelium, and an overexuberant lung collagen reactivity followed by deposition of highly cross-linked mature collagen fibrils resistant to enzymatic degradation. In the present study, we have demonstrated that dietary supplementation with taurine and niacin offered almost complete protection against the lung fibrosis in a multidose BL hamster model. The mechanisms for the protective effect of taurine and niacin are multifaceted. These include the ability of taurine to scavenge HOCl and stabilize the biomembrane; niacin's ability to replenish the BL-induced depletion of NAD and ATP; and the combined effect of taurine and niacin to suppress all aspects of BL-induced increases in the lung collagen reactivity, a hallmark of interstitial pulmonary fibrosis. It was concluded from the data presented at this Conference that the combined treatment with taurine and niacin, which offers a multipronged approach, will have great therapeutic potential in the intervention of the development of chemically induced interstitial lung fibrosis in animals and humans

    PET/CT Imaging of c-Myc Transgenic Mice Identifies the Genotoxic N-Nitroso-Diethylamine as Carcinogen in a Short-Term Cancer Bioassay

    Get PDF
    Background: More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. Methodology/Principal Findings: mCT and 18 F-FDG mPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced mCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. Conclusions/Significance: The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgeni

    Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies.</p> <p>Methods</p> <p>In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking.</p> <p>Results</p> <p>Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed.</p> <p>Conclusion</p> <p>We conclude that VE might prevent lung tumor induced by smoking in Swiss mice.</p

    Effects of long-term low-dose oxygen supplementation on the epithelial function, collagen metabolism and interstitial fibrogenesis in the guinea pig lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The patient population receiving long-term oxygen therapy has increased with the rising morbidity of COPD. Although high-dose oxygen induces pulmonary edema and interstitial fibrosis, potential lung injury caused by long-term exposure to low-dose oxygen has not been fully analyzed. This study was designed to clarify the effects of long-term low-dose oxygen inhalation on pulmonary epithelial function, edema formation, collagen metabolism, and alveolar fibrosis.</p> <p>Methods</p> <p>Guinea pigs (n = 159) were exposed to either 21% or 40% oxygen for a maximum of 16 weeks, and to 90% oxygen for a maximum of 120 hours. Clearance of inhaled technetium-labeled diethylene triamine pentaacetate (Tc-DTPA) and bronchoalveolar lavage fluid-to-serum ratio (BAL/Serum) of albumin (ALB) were used as markers of epithelial permeability. Lung wet-to-dry weight ratio (W/D) was measured to evaluate pulmonary edema, and types I and III collagenolytic activities and hydroxyproline content in the lung were analyzed as indices of collagen metabolism. Pulmonary fibrotic state was evaluated by histological quantification of fibrous tissue area stained with aniline blue.</p> <p>Results</p> <p>The clearance of Tc-DTPA was higher with 2 week exposure to 40% oxygen, while BAL/Serum Alb and W/D did not differ between the 40% and 21% groups. In the 40% oxygen group, type I collagenolytic activities at 2 and 4 weeks and type III collagenolytic activity at 2 weeks were increased. Hydroxyproline and fibrous tissue area were also increased at 2 weeks. No discernible injury was histologically observed in the 40% group, while progressive alveolar damage was observed in the 90% group.</p> <p>Conclusion</p> <p>These results indicate that epithelial function is damaged, collagen metabolism is affected, and both breakdown of collagen fibrils and fibrogenesis are transiently induced even with low-dose 40% oxygen exposure. However, these changes are successfully compensated even with continuous exposure to low-dose oxygen. We conclude that long-term low-dose oxygen exposure does not significantly induce permanent lung injury in guinea pigs.</p

    Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer.</p> <p>Methods</p> <p>Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry.</p> <p>Results</p> <p>We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers.</p> <p>Conclusion</p> <p>These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.</p
    corecore