23 research outputs found
Most viral peptides displayed by class I MHC on infected cells are immunogenic
CD8+ T cells are essential effectors in antiviral immunity, recognizing short virus-derived peptides presented by MHC class I (pMHCI) on the surface of infected cells. However, the fraction of viral pMHCI on infected cells that are immunogenic has not been shown for any virus. To approach this fundamental question, we used peptide sequencing by high-resolution mass spectrometry to identify more than 170 vaccinia virus pMHCI presented on infected mouse cells. Next, we screened each peptide for immunogenicity in multiple virus-infected mice, revealing a wide range of immunogenicities. A surprisingly high fraction (>80%) of pMHCI were immunogenic in at least one infected mouse, and nearly 40% were immunogenic across more than half of the mice screened. The high number of peptides found to be immunogenic and the distribution of responses across mice give us insight into the specificity of antiviral CD8+ T cell responses.This work was supported by a Project Grant
from the National Health and Medical Research Council Australia (NHMRC)
(APP1084283) (to D.C.T., A.W.P., and N.P.C.); an NHMRC Senior Research
Fellowship (APP1104329) (to D.C.T.); an NHMRC Principal Research Fellowship
(APP1137739) (to A.W.P.); and a Viertel Fellowship, ARC Future Fellowship,
and NHMRC Program Grant (APP1071916) (to N.L.L.G.)
An Outbreak of Severe Infections with Community-Acquired MRSA Carrying the Panton-Valentine Leukocidin Following Vaccination
Background: Infections with community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) are emerging
worldwide. We investigated an outbreak of severe CA-MRSA infections in children following out-patient vaccination.
Methods and Findings: We carried out a field investigation after adverse events following immunization (AEFI) were reported. We reviewed the clinical data from all cases. S. aureus recovered from skin infections and from nasal and throat swabs were analyzed by pulse-field gel electrophoresis, multi locus sequence typing, PCR and microarray. In May 2006, nine children presented with AEFI, ranging from fatal toxic shock syndrome, necrotizing soft tissue infection, purulent abscesses, to fever
with rash. All had received a vaccination injection in different health centres in one District of Ho Chi Minh City. Eight children had been vaccinated by the same health care worker (HCW). Deficiencies in vaccine quality, storage practices, or preparation and delivery were not found. Infection control practices were insufficient. CA-MRSA was cultured in four children and from nasal and throat swabs from the HCW. Strains from children and HCW were indistinguishable. All carried the Panton-Valentine leukocidine (PVL), the staphylococcal enterotoxin B gene, the gene complex for staphylococcal-cassette-chromosome mec type V, and were sequence type 59. Strain HCM3A is epidemiologically unrelated to a strain of ST59 prevalent in the USA, althoughthey belong to the same lineage.
Conclusions. We describe an outbreak of infections with CA-MRSA in children, transmitted by an asymptomatic colonized HCW during immunization injection. Consistent adherence to injection practice guidelines is needed to prevent CA-MRSA transmission in both in- and outpatient settings
Effectiveness of rapid SARS-CoV-2 genome sequencing in supporting infection control for hospital-onset COVID-19 infection : multicenter, prospective study
Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected â„48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020-April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusion: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) [grant code: MC_PC_19027], and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: ClinicalTrials.gov Identifier: NCT04405934
SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes
Background
The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes.
Aim
To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave.
Methods
A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records.
Findings
In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home.
Conclusion
The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine
Design, Validation, and Application of a Seven-Strain Staphylococcus aureus PCR Product Microarray for Comparative Genomics
Bacterial comparative genomics has been revolutionized by microarrays, but the power of any microarray is dependent on the number and diversity of gene reporters it contains. Staphylococcus aureus is an important human pathogen causing a wide range of invasive and toxin-mediated diseases, and more than 20% of the genome of any isolate consists of variable genes. Seven whole-genome sequences of S. aureus are available, and we exploited this rare opportunity to design, build, and validate a comprehensive, nonredundant PCR product microarray carrying reporters that represent every predicted open reading frame (3,623 probes). Such a comprehensive microarray necessitated a novel design strategy. Validation with the seven sequenced strains showed correct identification of 93.9% of genes present or absent/divergent but was dependent on the method of analysis chosen. Microarray data were highly reproducible, reducing the need for many replicate slides. Interpretation of microarray data was enhanced by focusing on the major areas of variationâthe presence or absence of mobile genetic elements (MGEs). We compiled âcomposite genomesâ of every individual MGE and visualized their distribution. This allowed the sensitive discrimination of related isolates, including the first clear description of how isolates of the same clone of epidemic methicillin-resistant S. aureus differ substantially in their carriage of MGEs. These MGEs carry virulence and resistance genes, suggesting differences in pathogenic potential. The novel methods of design and interpretation of data generated from this microarray will enable further studies of S. aureus evolution, epidemiology, and pathogenesis
Recommended from our members
CTLA4 protects against maladaptive cytotoxicity during the differentiation of effector and follicular CD4 + T cells
Acknowledgements: We thank Harpreet Vohra and Michael Devoy at the Flow Cytometry Facility and Maxim Nekrasov at the Australian Cancer Research Foundation (ACRF) Biomolecular Resource Facility of the John Curtin School of Medical Research for technical support and Ann-Maree Hatch and Anastasia Wilson for assistance with obtaining blood and tonsil samples. We thank Dominik Spensberger and Gaetan Burgio at John Curtin School of Medical Research for their help with mouse model construction. The study was supported by NHMRC grants APP1113577 (MCC, CGV) and APP1079648 (MCC, CGV), and grant APP1130330 awarded through the Priority-drive Collaborative Cancer Research Scheme and funded by Cancer Australia (MCC, DY, SY).As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection
Recommended from our members
CTLA4 protects against maladaptive cytotoxicity during the differentiation of effector and follicular CD4+ T cells.
As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection
Effectiveness of rapid SARS-CoV-2 genome sequencing in supporting infection control for hospital-onset COVID-19 infection: Multicentre, prospective study.
Peer reviewed: TrueFunder: Medical Research Council; FundRef: http://dx.doi.org/10.13039/501100000265BACKGROUND: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. METHODS: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected â„48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. RESULTS: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. CONCLUSIONS: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. FUNDING: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. CLINICAL TRIAL NUMBER: NCT04405934