73 research outputs found

    Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II

    Full text link
    The current system for the classification of hereditary defects of tooth dentin is based upon clinical and radiographic findings and consists of two types of dentin dysplasia (DD) and three types of dentinogenesis imperfecta (DGI). However, whether DGI type III should be considered a distinct phenotype or a variation of DGI type II is debatable. In the 30 years since the classification system was first proposed, significant advances have been made regarding the genetic etiologies of inherited dentin defects. DGI type II is recognized as an autosomal dominant disorder with almost complete penetrance and a low frequency of de novo mutations. We have identified a mutation (c.52G→T, p.V18F) at the first nucleotide of exon 3 of the DSPP (dentin sialophosphoprotein) gene in a Korean family (de novo) and a Caucasian family. This mutation has previously been reported as causing DGI type II in a Chinese family. These findings suggest that this mutation site represents a mutational “hot spot” in the DSPP gene. The clinical and radiographic features of these two families include the classic phenotypes associated with both DGI type II and type III. Finding that a single mutation causes both phenotypic patterns strongly supports the conclusion that DGI type II and DGI type III are not separate diseases but rather the phenotypic variation of a single disease. We propose a modification of the current classification system such that the designation “hereditary opalescent dentin” or “DGI type II” should be used to describe both the DGI type II and type III phenotypes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47595/1/439_2004_Article_1223.pd

    Amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) represents a group of developmental conditions, genomic in origin, which affect the structure and clinical appearance of enamel of all or nearly all the teeth in a more or less equal manner, and which may be associated with morphologic or biochemical changes elsewhere in the body. The prevalence varies from 1:700 to 1:14,000, according to the populations studied. The enamel may be hypoplastic, hypomineralised or both and teeth affected may be discoloured, sensitive or prone to disintegration. AI exists in isolation or associated with other abnormalities in syndromes. It may show autosomal dominant, autosomal recessive, sex-linked and sporadic inheritance patterns. In families with an X-linked form it has been shown that the disorder may result from mutations in the amelogenin gene, AMELX. The enamelin gene, ENAM, is implicated in the pathogenesis of the dominant forms of AI. Autosomal recessive AI has been reported in families with known consanguinity. Diagnosis is based on the family history, pedigree plotting and meticulous clinical observation. Genetic diagnosis is presently only a research tool. The condition presents problems of socialisation, function and discomfort but may be managed by early vigorous intervention, both preventively and restoratively, with treatment continued throughout childhood and into adult life. In infancy, the primary dentition may be protected by the use of preformed metal crowns on posterior teeth. The longer-term care involves either crowns or, more frequently these days, adhesive, plastic restorations

    Dentin dysplasia type I: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Dentin dysplasia is a rare hereditary disturbance of dentin formation characterized by defective dentin development with clinically normal appearing crowns, severe hypermobility of teeth and spontaneous dental abscesses or cysts. Radiographic analysis shows obliteration of all pulp chambers, short, blunted and malformed or absent roots and peri-apical radiolucencies of non carious teeth.</p> <p>Case presentation</p> <p>We present a case of dentin dysplasia type I in a 12-year-old Iranian boy, and the clinical, radiographic and histopathologic findings of this condition and treatment are described.</p> <p>Conclusions</p> <p>There are still many inconclusive issues in the diagnosis and management of patients with dentin dysplasia. The diagnostic features of this rare disturbance will remain incompletely defined until additional cases have been described. Early diagnosis of the condition and initiation of effective regular dental treatments may help these patients to prevent or delay loss of dentition.</p

    Otodental syndrome

    Get PDF
    The otodental syndrome also named otodental dysplasia, is characterised by a striking dental phenotype known as globodontia, associated with sensorineural high frequency hearing loss and eye coloboma. Globodontia occurs in both primary and permanent dentition, affecting canine and molar teeth (i.e. enlarged bulbous malformed posterior teeth with almost no discernable cusps or grooves). The condition appears to be inherited in an autosomal dominant mode, although sporadic cases have been reported. It is a rare disease, a few families have been described in the literature. In the British family, the locus for oculo-oto-dental syndrome was mapped to 20q13.1 within a 12-cM critical chromosomal region. Dental management is complex, interdisciplinary and will include regular follow up, scheduled teeth extraction and orthodontic treatment. Hearing checks and, if necessary, hearing aids are mandatory, as well as eye examination and ad hoc treatment if necessary

    Enamelin is critical for ameloblast integrity and enamel ultrastructure formation

    Get PDF
    Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam-/- mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam-/- mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using ÎČ-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam -/- background did not fully recover enamel formation while a medium expresser in the Enam+/- background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation. © 2014 Hu et al

    Off-label psychopharmacologic prescribing for children: History supports close clinical monitoring

    Get PDF
    The review presents pediatric adverse drug events from a historical perspective and focuses on selected safety issues associated with off-label use of medications for the psychiatric treatment of youth. Clinical monitoring procedures for major psychotropic drug classes are reviewed. Prior studies suggest that systematic treatment monitoring is warranted so as to both minimize risk of unexpected adverse events and exposures to ineffective treatments. Clinical trials to establish the efficacy and safety of drugs currently being used off-label in the pediatric population are needed. In the meantime, clinicians should consider the existing evidence-base for these drugs and institute close clinical monitoring

    Gingival fibromatosis: clinical, molecular and therapeutic issues

    Full text link
    • 

    corecore