6 research outputs found

    Application of electronic dental dynamometer in biomechanics

    Get PDF
    The paper presents a microprocessor force recorder, whose design allows the measurement of occlusal forces on a continuous basis with a maximum frequency of 250 Hz. The electronic dental dynamometer records the results of clinical trials in the form of graphic images and text files which are presented directly onto the computer. The recorded results can be processed digitally, as well as compared with other measurements, resulting in the ability to monitor the progress and potential advances in the treatment of masticatory organ diseases. An important advantage of the proposed solution is the simple and intuitive design. In addition, the dynamometer requires no power coming directly from the electricity network, as it is powered through a 5 V USB port. This feature not only determines the comfort of use, but also the safety as the voltage does not pose a risk to the patient during examination. The results recorded during clinical trials using the electronic dental dynamometer are consistent with those obtained using a calibrated mechanical dental dynamometer

    Application of electronic dental dynamometer in biomechanics

    Get PDF
    The paper presents a microprocessor force recorder, whose design allows the measurement of occlusal forces on a continuous basis with a maximum frequency of 250 Hz. The electronic dental dynamometer records the results of clinical trials in the form of graphic images and text files which are presented directly onto the computer. The recorded results can be processed digitally, as well as compared with other measurements, resulting in the ability to monitor the progress and potential advances in the treatment of masticatory organ diseases. An important advantage of the proposed solution is the simple and intuitive design. In addition, the dynamometer requires no power coming directly from the electricity network, as it is powered through a 5 V USB port. This feature not only determines the comfort of use, but also the safety as the voltage does not pose a risk to the patient during examination. The results recorded during clinical trials using the electronic dental dynamometer are consistent with those obtained using a calibrated mechanical dental dynamometer

    Using the Kaplan–Meier Estimator to Assess the Reliability of Agricultural Machinery

    No full text
    Kaplan–Meier analyses can be used in many disciplines, e.g., agricultural engineering. Agricultural machinery and vehicles can be regarded as objects that ‘die’ because, like living creatures, they failed, although after repair they can be used until scrapped. This article presents an example of using the Kaplan–Meier estimator to plot the reliability function curves of five different models of Zetor farm tractors. The research shows that the median operating time for one of the tested models, which is about 200 engine-operating hours, is 20% lower than for the entire population of analyzed Zetor tractors. This means that the quality of the model, which is very popular in Poland, differs significantly from the other models of this manufacturer. The method cannot be validated, due to a lack of similar functions for other brands of tractors. Progressive automation and digitization of agriculture can contribute to improving the reliability of agriculture work. The user can focus on the correct performance of agrotechnical treatments, and modern control systems will signal in real time, about identified or approaching costly failures

    Using the Kaplan–Meier Estimator to Assess the Reliability of Agricultural Machinery

    No full text
    Kaplan–Meier analyses can be used in many disciplines, e.g., agricultural engineering. Agricultural machinery and vehicles can be regarded as objects that ‘die’ because, like living creatures, they failed, although after repair they can be used until scrapped. This article presents an example of using the Kaplan–Meier estimator to plot the reliability function curves of five different models of Zetor farm tractors. The research shows that the median operating time for one of the tested models, which is about 200 engine-operating hours, is 20% lower than for the entire population of analyzed Zetor tractors. This means that the quality of the model, which is very popular in Poland, differs significantly from the other models of this manufacturer. The method cannot be validated, due to a lack of similar functions for other brands of tractors. Progressive automation and digitization of agriculture can contribute to improving the reliability of agriculture work. The user can focus on the correct performance of agrotechnical treatments, and modern control systems will signal in real time, about identified or approaching costly failures

    THE IMPACT OF EXTRUSION ON THE BIOGAS AND BIOMETHANE YIELD OF PLANT SUBSTRATES

    No full text
    The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion) and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg), in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg). The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of the extrusion process and of biogas production on energy efficiency at different conditions
    corecore