625 research outputs found

    Meson correlation functions at high temperatures

    Full text link
    We present preliminary results for the correlation- and spectral functions of different meson channels on the lattice. The main focus lies on gaining control over cut-off as well as on the finite-volume effects. Extrapolations of screening masses above the deconfining temperature are guided by the result of the free (T=∞T=\infty) case on the lattice and in the continuum. We study the quenched non-perturbatively improved Wilson-clover fermion as well as the hypercube fermion action which might show less cut-off effects.Comment: 6 pages, 8 figures (minor changes, citations added

    Screening correlators with chiral Fermions

    Get PDF
    We study screening correlators of quark-antiquark composites at T=2T_c, where T_c is the QCD phase transition temperature, using overlap quarks in the quenched approximation of lattice QCD. As the lattice spacing is changed from 1/4T to a=1/6T and 1/8T, we find that screening correlators change little, in contrast with the situation for other types of lattice fermions. All correlators are close to the ideal gas prediction at small separations. The long distance falloff is clearly exponential, showing that a parametrization by a single screening length is possible at distances z > 1/T. The correlator corresponding to the thermal vector is close to the ideal gas value at all distances, whereas that for the thermal scalar deviates at large distances. This is examined through the screening lengths and momentum space correlators. There is strong evidence that the screening transfer matrix does not have reflection positivity.Comment: 10 pages, 9 fig

    Quasi-static probes of the QCD plasma

    Full text link
    Screening correlators and masses were studied at finite temperature in QCD with two flavours of dynamical staggered quarks on a lattice. The spectrum of screening masses show a hierarchical approach to chiral symmetry restoration. Control of explicit chiral symmetry breaking through the quark mass was shown to be an important step to understanding this phenomenon. No sign of decays was found in the finite temperature scalar meson-like correlators in the confined phase

    Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    Get PDF
    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties

    Mesonic screening masses at high temperature and finite density

    Get PDF
    We compute the first perturbative correction to the static correlation lengths of light quark bilinears in hot QCD with finite quark chemical potentials. The correction is small and positive, with mu-dependence depending on the relative sign of chemical potentials and the number of dynamical flavors. The computation is carried out using a three-dimensional effective theory for the lowest fermionic Matsubara mode. We also compute the full correlator in free theory and find a rather complicated general mu-dependence at shorter distances. Finally, rough comparisons with lattice simulations are discussed.Comment: 24 pages, 5 figures, JHEP style. Minor corrections and clarifications, version to appear in JHE

    Picosecond timing of Microwave Cherenkov Impulses from High-Energy Particle Showers Using Dielectric-loaded Waveguides

    Full text link
    We report on the first measurements of coherent microwave impulses from high-energy particle-induced electromagnetic showers generated via the Askaryan effect in a dielectric-loaded waveguide. Bunches of 12.16 GeV electrons with total bunch energy of ∼103−104\sim 10^3-10^4 GeV were pre-showered in tungsten, and then measured with WR-51 rectangular (12.6 mm by 6.3 mm) waveguide elements loaded with solid alumina (Al2O3Al_2 O_3) bars. In the 5-8 GHz TE10TE_{10} single-mode band determined by the presence of the dielectric in the waveguide, we observed band-limited microwave impulses with amplitude proportional to bunch energy. Signals in different waveguide elements measuring the same shower were used to estimate relative time differences with 2.3 picosecond precision. These measurements establish a basis for using arrays of alumina-loaded waveguide elements, with exceptional radiation hardness, as very high precision timing planes for high-energy physics detectors.Comment: 16 pages, 15 figure

    Debye screening in strongly coupled N=4 supersymmetric Yang-Mills plasma

    Full text link
    Using the AdS/CFT correspondence, we examine the behavior of correlators of Polyakov loops and other operators in N=4 supersymmetric Yang-Mills theory at non-zero temperature. The implications for Debye screening in this strongly coupled non-Abelian plasma, and comparisons with available results for thermal QCD, are discussed.Comment: 21 pages, 5 figures, significantly expanded discussion of Polyakov loop correlator and static quark-antiquark potentia
    • …
    corecore