2,379 research outputs found
Random matrix approach in search for weak signals immersed in background noise
We present new, original and alternative method for searching signals coded
in noisy data. The method is based on the properties of random matrix
eigenvalue spectra. First, we describe general ideas and support them with
results of numerical simulations for basic periodic signals immersed in
artificial stochastic noise. Then, the main effort is put to examine the
strength of a new method in investigation of data content taken from the real
astrophysical NAUTILUS detector, searching for the presence of gravitational
waves. Our method discovers some previously unknown problems with data
aggregation in this experiment. We provide also the results of new method
applied to the entire respond signal from ground based detectors in future
experimental activities with reduced background noise level. We indicate good
performance of our method what makes it a positive predictor for further
applications in many areas.Comment: 15 pages, 16 figure
Provenance-Centered Dataset of Drug-Drug Interactions
Over the years several studies have demonstrated the ability to identify
potential drug-drug interactions via data mining from the literature (MEDLINE),
electronic health records, public databases (Drugbank), etc. While each one of
these approaches is properly statistically validated, they do not take into
consideration the overlap between them as one of their decision making
variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a
public nanopublication-based RDF dataset with trusty URIs that encompasses some
of the most cited prediction methods and sources to provide researchers a
resource for leveraging the work of others into their prediction methods. As
one of the main issues to overcome the usage of external resources is their
mappings between drug names and identifiers used, we also provide the set of
mappings we curated to be able to compare the multiple sources we aggregate in
our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference
(ISWC) 201
How and Why is An Answer (Still) Correct? Maintaining Provenance in Dynamic Knowledge Graphs
Knowledge graphs (KGs) have increasingly become the backbone of many critical
knowledge-centric applications. Most large-scale KGs used in practice are
automatically constructed based on an ensemble of extraction techniques applied
over diverse data sources. Therefore, it is important to establish the
provenance of results for a query to determine how these were computed.
Provenance is shown to be useful for assigning confidence scores to the
results, for debugging the KG generation itself, and for providing answer
explanations. In many such applications, certain queries are registered as
standing queries since their answers are needed often. However, KGs keep
continuously changing due to reasons such as changes in the source data,
improvements to the extraction techniques, refinement/enrichment of
information, and so on. This brings us to the issue of efficiently maintaining
the provenance polynomials of complex graph pattern queries for dynamic and
large KGs instead of having to recompute them from scratch each time the KG is
updated. Addressing these issues, we present HUKA which uses provenance
polynomials for tracking the derivation of query results over knowledge graphs
by encoding the edges involved in generating the answer. More importantly, HUKA
also maintains these provenance polynomials in the face of updates---insertions
as well as deletions of facts---to the underlying KG. Experimental results over
large real-world KGs such as YAGO and DBpedia with various benchmark SPARQL
query workloads reveals that HUKA can be almost 50 times faster than existing
systems for provenance computation on dynamic KGs
On the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) solutions
In this work we have explored the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) (PVP) solutions using pulse radiolysis, density functional theory (DFT) and literature data. On the basis of literature data on site-specific kinetics of hydrogen abstraction from simple amides and spectra corresponding to specific radical sites on the same amides we have assessed the distribution of H-atom abstraction by \u2022OH radicals from different positions on the pyrrolidone ring and the polymer backbone. Pulse radiolysis experiments performed at different doses per pulse and different PVP concentrations demonstrate that the H-abstracting radiolysis products are not quantitatively scavenged by the polymer when the dose per pulse exceeds 4840 Gy. The implications of this are discussed in the context of radical-initiated crosslinking reactions. At a mass fraction of 0.1% PVP and doses per pulse ranging from 7 Gy to 117 Gy, the overall radical decay observed at 390 nm follows second order kinetics with rate constants on the order of 109 dm3 mol-1 s-1
Ward's Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm
The Ward error sum of squares hierarchical clustering method has been very
widely used since its first description by Ward in a 1963 publication. It has
also been generalized in various ways. However there are different
interpretations in the literature and there are different implementations of
the Ward agglomerative algorithm in commonly used software systems, including
differing expressions of the agglomerative criterion. Our survey work and case
studies will be useful for all those involved in developing software for data
analysis using Ward's hierarchical clustering method.Comment: 20 pages, 21 citations, 4 figure
Density of states in random lattices with translational invariance
We propose a random matrix approach to describe vibrational excitations in
disordered systems. The dynamical matrix M is taken in the form M=AA^T where A
is some real (not generally symmetric) random matrix. It guaranties that M is a
positive definite matrix which is necessary for mechanical stability of the
system. We built matrix A on a simple cubic lattice with translational
invariance and interaction between nearest neighbors. We found that for certain
type of disorder phonons cannot propagate through the lattice and the density
of states g(w) is a constant at small w. The reason is a breakdown of affine
assumptions and inapplicability of the elasticity theory. Young modulus goes to
zero in the thermodynamic limit. It strongly reminds of the properties of a
granular matter at the jamming transition point. Most of the vibrations are
delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil.
Mag. B v.79, 1715 (1999).Comment: 4 pages, 5 figure
Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres
We present a comprehensive description of the theory and practice of opacity
calculations from the infrared to the ultraviolet needed to generate models of
the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using
existing line lists and spectroscopic databases in disparate formats are
presented and plots of the resulting absorptive opacities versus wavelength for
the most important molecules and atoms at representative temperature/pressure
points are provided. Electronic, ro-vibrational, bound-free, bound-bound,
free-free, and collision-induced transitions and monochromatic opacities are
derived, discussed, and analyzed. The species addressed include the alkali
metals, iron, heavy metal oxides, metal hydrides, , , , ,
, , , and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical
Journal Supplement Series, replaced with more compact emulateapj versio
Induction of Cell Stress in Neurons from Transgenic Mice Expressing Yellow Fluorescent Protein: Implications for Neurodegeneration Research
Peer reviewedPublisher PD
The Social context of motorcycle riding and the key determinants influencing rider behavior: A qualitative investigation
Objective: Given the increasing popularity of motorcycle riding and heightened risk of injury or death associated with being a rider, this study explored rider behaviour as a determinant of rider safety and, in particular, key beliefs and motivations which influence such behaviour. To enhance the effectiveness of future education and training interventions, it is important to understand ridersâ own views about what influences how they ride. Specifically, this study sought to identify key determinants of ridersâ behaviour in relation to the social context of riding including social and identity-related influences relating to the group (group norms and group identity) as well as the self (moral/personal norm and self-identity). ----- ----- Method: Qualitative research was undertaken via group discussions with motorcycle riders (n = 41). Results: The findings revealed that those in the group with which one rides represent an important source of social influence. Also, the motorcyclist (group) identity was associated with a range of beliefs, expectations, and behaviours considered to be normative. Exploration of the construct of personal norm revealed that riders were most cognizant of the âwrong things to doâ when riding; among those issues raised was the importance of protective clothing (albeit for the protection of others and, in particular, pillion passengers). Finally, self-identity as a motorcyclist appeared to be important to a riderâs self-concept and was likely to influence their on-road behaviour. ----- ----- Conclusion: Overall, the insight provided by the current study may facilitate the development of interventions including rider training as well as public education and mass media messages. The findings suggest that these interventions should incorporate factors associated with the social nature of riding in order to best align it with some of the key beliefs and motivations underpinning ridersâ on-road behaviours
- âŠ