4,369 research outputs found

    Ferreting out the Fluffy Bunnies: Entanglement constrained by Generalized superselection rules

    Full text link
    Entanglement is a resource central to quantum information (QI). In particular, entanglement shared between two distant parties allows them to do certain tasks that would otherwise be impossible. In this context, we study the effect on the available entanglement of physical restrictions on the local operations that can be performed by the two parties. We enforce these physical restrictions by generalized superselection rules (SSRs), which we define to be associated with a given group of physical transformations. Specifically the generalized SSR is that the local operations must be covariant with respect to that group. Then we operationally define the entanglement constrained by a SSR, and show that it may be far below that expected on the basis of a naive (or ``fluffy bunny'') calculation. We consider two examples. The first is a particle number SSR. Using this we show that for a two-mode BEC (with Alice owning mode AA and Bob mode BB), the useful entanglement shared by Alice and Bob is identically zero. The second, a SSR associated with the symmetric group, is applicable to ensemble QI processing such as in liquid-NMR. We prove that even for an ensemble comprising many pairs of qubits, with each pair described by a pure Bell state, the entanglement per pair constrained by this SSR goes to zero for a large ensemble.Comment: 8 pages, proceedings paper for an invited talk at 16th International Conference on Laser Spectroscopy (2003

    Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis

    Full text link
    We investigate schemes for Hamiltonian parameter estimation of a two-level system using repeated measurements in a fixed basis. The simplest (Fourier based) schemes yield an estimate with a mean square error (MSE) that decreases at best as a power law ~N^{-2} in the number of measurements N. By contrast, we present numerical simulations indicating that an adaptive Bayesian algorithm, where the time between measurements can be adjusted based on prior measurement results, yields a MSE which appears to scale close to \exp(-0.3 N). That is, measurements in a single fixed basis are sufficient to achieve exponential scaling in N.Comment: 5 pages, 3 figures, 1 table. Published versio

    Quantum phenomena modelled by interactions between many classical worlds

    Full text link
    We investigate whether quantum theory can be understood as the continuum limit of a mechanical theory, in which there is a huge, but finite, number of classical 'worlds', and quantum effects arise solely from a universal interaction between these worlds, without reference to any wave function. Here a `world' means an entire universe with well-defined properties, determined by the classical configuration of its particles and fields. In our approach each world evolves deterministically; probabilities arise due to ignorance as to which world a given observer occupies; and we argue that in the limit of infinitely many worlds the wave function can be recovered (as a secondary object) from the motion of these worlds. We introduce a simple model of such a 'many interacting worlds' approach and show that it can reproduce some generic quantum phenomena---such as Ehrenfest's theorem, wavepacket spreading, barrier tunneling and zero point energy---as a direct consequence of mutual repulsion between worlds. Finally, we perform numerical simulations using our approach. We demonstrate, first, that it can be used to calculate quantum ground states, and second, that it is capable of reproducing, at least qualitatively, the double-slit interference phenomenon.Comment: Published version (including further discussion of interpretation and quantum limit

    Quantum optical waveform conversion

    Full text link
    Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.Comment: submitte

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Adaptive single-shot phase measurements: The full quantum theory

    Full text link
    The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator detuned from the system (heterodyne detection) so that it is sometimes in phase and sometimes in quadrature with the system over the course of the measurement. This enables both quadratures of the system to be measured, from which the phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)] has shown recently that it is possible to make a much better estimate of the phase by using an adaptive technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is necessary for calculating the phase variance for fields with small photon numbers, and also for considering figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to heterodyne detection as far as the variance is concerned. However the tails of the probability distribution are surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.

    Adiabatic Elimination in Compound Quantum Systems with Feedback

    Get PDF
    Feedback in compound quantum systems is effected by using the output from one sub-system (``the system'') to control the evolution of a second sub-system (``the ancilla'') which is reversibly coupled to the system. In the limit where the ancilla responds to fluctuations on a much shorter time scale than does the system, we show that it can be adiabatically eliminated, yielding a master equation for the system alone. This is very significant as it decreases the necessary basis size for numerical simulation and allows the effect of the ancilla to be understood more easily. We consider two types of ancilla: a two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g. an optical mode). For each, we consider two forms of feedback: coherent (for which a quantum mechanical description of the feedback loop is required) and incoherent (for which a classical description is sufficient). We test the master equations we obtain using numerical simulation of the full dynamics of the compound system. For the system (a parametric oscillator) and feedback (intensity-dependent detuning) we choose, good agreement is found in the limit of heavy damping of the ancilla. We discuss the relation of our work to previous work on feedback in compound quantum systems, and also to previous work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment
    • …
    corecore