74 research outputs found
Interpretation of quantum jump and diffusion-processes illustrated on the Bloch sphere
It is shown that the evolution of an open quantum system whose density operator obeys a Markovian master equation can in some cases be meaningfully described in terms of stochastic Schrödinger equations (SSE’s) for its state vector. A necessary condition for this is that the information carried away from the system by the bath (source of the irreversibility) be recoverable. The primary field of application is quantum optics, where the bath consists of the continuum of electromagnetic modes. The information lost from the system can be recovered using a perfect photodetector. The state of the system conditioned on the photodetections undergoes stochastic quantum jumps. Alternative measurement schemes on the outgoing light (homodyne and heterodyne detection) are shown to give rise to SSE’s with diffusive terms. These three detection schemes are illustrated on a simple quantum system, the two-level atom, giving new perspectives on the interpretation of measurement results. The reality of these and other stochastic processes for state vectors is discussed
Post-Newtonian Gravitational Radiation
1 Introduction 2 Multipole Decomposition 3 Source Multipole Moments 4
Post-Minkowskian Approximation 5 Radiative Multipole Moments 6 Post-Newtonian
Approximation 7 Point-Particles 8 ConclusionComment: 46 pages, in Einstein's Field Equations and Their Physical
Implications, B. Schmidt (Ed.), Lecture Notes in Physics, Springe
The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge
Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment
The MAJORANA DEMONSTRATOR for 0νββ: Current Status and Future Plans
The MAJORANA DEMONSTRATOR will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3 counts in the 0νββ-decay ROI per tonne of target isotope per year (cnts/(ROI-t-y)). The current status of the Demonstrator is discussed, as are plans for its completion
A Dark Matter Search with MALBEK
The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal
Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in Ge76. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in Ge76) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Qββ and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×1025 yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0-2.5+3.1 counts/(FWHM t yr)
- …