88 research outputs found

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Principles of the Field Theory of High Temperature Superconductivity in Underdoped Copper-Oxides

    Full text link
    Here I extend my last work about the origin of the pseudo-gaps in underdoped cuprates (arXiv: cond-mat. 1011.3206), to include the mechanism of superconductivity. This is done by adapting the formalism of the double correlations in systems with nested Fermi surfaces to the semi one dimensional system of strings of holes. It is proposed that magnetic interaction is crucial for the establishment of the pseudogap and the high temperature superconductivity. It is shown that superconductivity disturbs the completeness of the strings of holes, and creates fluctuations in their shapes. This, in turn, reduces the magnetic interaction and the pseudogap order.Comment: This paper has been withdrawn by the author. 27 page

    Chandra X-ray observations of the 3C295 cluster core

    Get PDF
    We examine the properties of the X-ray gas in the central regions of the distant (z=0.46), X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory. Between radii of 50-500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ~5 keV. Within the central 50 kpc radius this value drops to kT ~3.7 keV. The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50 kpc radius of the cluster, with a mass deposition rate of approximately 280 solar masses per year. We estimate an age for the cooling flow of 1-2 Gyr, which is approximately one thousand times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50 kpc region, which may be due to oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C295, we estimate the magnetic field strength in the region of the cluster core to be B ~12 \muG.Comment: 27 pages, 16 figs, 5 tables. Accepted for publication in MNRA

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention

    Paleoceanographic implication of the Eocene-Oligocene calcareous nannofossils from ODP Sites 711 and 748 in the Indian Ocean

    No full text
    An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from —20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~ 1.0 %o positive shift in the δ1 8θ value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in δ'8O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the δ1 8θ increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1%e δ1 8θ increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 × I03 km3, or 20% the size of the present Antarctic ice sheet

    Authigenic smectite clay coats in CRP-3 drillcore, Victoria Land basin, Antarctica, as a possible indicator of fluid flow: a progress report

    Get PDF
    The presence of authigenic smectite in the lower Oligocene sandstones of the Cape Roberts Project core CRP-3 from the Victoria Land Basin of Antarctica is confirmed by scanning electron, scanning-transmission electron, and light microscopy. It was emplaced as a single generation of cement within the lower portion of the Oligocene section. This section has undergone no discernible compaction since cementation. Permeabilities measured on fifty core plugs show that the lower portion of the Oligocene (from 370-766 meters below sea floor) also has systematically higher values than sediment in uppermost CRP-3 and all of CRP-2 and CRP-1. Three models for smectite authigenesis are considered as multiple working hypotheses to be tested: 1) Burial diagenesis with necessary components sourced from volcanogenic materials and heavy minerals within the drilled sequence; 2) Precipitation from hydrothermal waters associated with possible igneous intrusion(s) and nearby faults; 3) Mobilization and injection of regionally compactive “thermobaric” fluids along a nearby fault that bounds a major graben parallel to the Transantarctic Mountain Front. The preponderance of the available evidence and Occum’s Razor favors the first model, although special circumstances dictated by the position of the drill site along a rapidly subsiding rift basin require that all three models be considered equally until our analyses are complete
    corecore