924 research outputs found
X ray opacity in cluster cooling flows
We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical
Late Pop III Star Formation During the Epoch of Reionization: Results from the Renaissance Simulations
We present results on the formation of Pop III stars at redshift 7.6 from the
Renaissance Simulations, a suite of extremely high-resolution and physics-rich
radiation transport hydrodynamics cosmological adaptive-mesh refinement
simulations of high redshift galaxy formation performed on the Blue Waters
supercomputer. In a survey volume of about 220 comoving Mpc, we found 14
Pop III galaxies with recent star formation. The surprisingly late formation of
Pop III stars is possible due to two factors: (i) the metal enrichment process
is local and slow, leaving plenty of pristine gas to exist in the vast volume;
and (ii) strong Lyman-Werner radiation from vigorous metal-enriched star
formation in early galaxies suppresses Pop III formation in ("not so") small
primordial halos with mass less than 3 10 M. We
quantify the properties of these Pop III galaxies and their Pop III star
formation environments. We look for analogues to the recently discovered
luminous Ly emitter CR7 (Sobral et al. 2015), which has been
interpreted as a Pop III star cluster within or near a metal-enriched star
forming galaxy. We find and discuss a system similar to this in some respects,
however the Pop III star cluster is far less massive and luminous than CR7 is
inferred to be.Comment: 8 pages, 4 figures, 3 tables. Accepted by Ap
Probing The Ultraviolet Luminosity Function of the Earliest Galaxies with the Renaissance Simulations
In this paper, we present the first results from the Renaissance Simulations,
a suite of extremely high-resolution and physics-rich AMR calculations of high
redshift galaxy formation performed on the Blue Waters supercomputer. These
simulations contain hundreds of well-resolved galaxies at , and
make several novel, testable predictions. Most critically, we show that the
ultraviolet luminosity function of our simulated galaxies is consistent with
observations of high-z galaxy populations at the bright end of the luminosity
function (M), but at lower luminosities is essentially flat
rather than rising steeply, as has been inferred by Schechter function fits to
high-z observations, and has a clearly-defined lower limit in UV luminosity.
This behavior of the luminosity function is due to two factors: (i) the strong
dependence of the star formation rate on halo virial mass in our simulated
galaxy population, with lower-mass halos having systematically lower star
formation rates and thus lower UV luminosities; and (ii) the fact that halos
with virial masses below M do not universally
contain stars, with the fraction of halos containing stars dropping to zero at
M. Finally, we show that the brightest of our
simulated galaxies may be visible to current and future ultra-deep space-based
surveys, particularly if lensed regions are chosen for observation.Comment: 7 pages, 4 figures, accepted by The Astrophysical Journal Letter
Chandra Observation of the Radio Source / X-ray Gas Interaction in the Cooling Flow Cluster Abell 2052
We present a Chandra observation of Abell 2052, a cooling flow cluster with a
central cD that hosts the complex radio source 3C 317. The data reveal
``holes'' in the X-ray emission that are coincident with the radio lobes. The
holes are surrounded by bright ``shells'' of X-ray emission. The data are
consistent with the radio source displacing and compressing, and at the same
time being confined by, the X-ray gas. The compression of the X-ray shells
appears to have been relatively gentle and, at most, slightly transonic. The
pressure in the X-ray gas (the shells and surrounding cooler gas) is
approximately an order of magnitude higher than the minimum pressure derived
for the radio source, suggesting that an additional source of pressure is
needed to support the radio plasma. The compression of the X-ray shells has
speeded up the cooling of the shells, and optical emission line filaments are
found coincident with the brightest regions of the shells.Comment: accepted for publication in ApJ Letters; for high-resolution color
figures, see http://www.astro.virginia.edu/~elb6n/abell2052.htm
Scaling Relations for Galaxies Prior to Reionization
The first galaxies in the Universe are the building blocks of all observed
galaxies. We present scaling relations for galaxies forming at redshifts when reionization is just beginning. We utilize the ``Rarepeak'
cosmological radiation hydrodynamics simulation that captures the complete star
formation history in over 3,300 galaxies, starting with massive Population III
stars that form in dark matter halos as small as ~. We make
various correlations between the bulk halo quantities, such as virial, gas, and
stellar masses and metallicities and their respective accretion rates,
quantifying a variety of properties of the first galaxies up to halo masses of
. Galaxy formation is not solely relegated to atomic cooling
halos with virial temperatures greater than K, where we find a dichotomy
in galaxy properties between halos above and below this critical mass scale.
Halos below the atomic cooling limit have a stellar mass -- halo mass
relationship .
We find a non-monotonic relationship between metallicity and halo mass for the
smallest galaxies. Their initial star formation events enrich the interstellar
medium and subsequent star formation to a median of and
, respectively, in halos of total mass that
is then diluted by metal-poor inflows, well beyond Population III
pre-enrichment levels of . The scaling relations presented
here can be employed in models of reionization, galaxy formation and chemical
evolution in order to consider these galaxies forming prior to reionization.Comment: 10 pages, 10 figures. Accepted to Ap
Galaxy Properties and UV Escape Fractions During Epoch of Reionization: Results from the Renaissance Simulations
Cosmic reionization is thought to be primarily fueled by the first
generations of galaxies. We examine their stellar and gaseous properties,
focusing on the star formation rates and the escape of ionizing photons, as a
function of halo mass, redshift, and environment using the full suite of the
{\it Renaissance Simulations} with an eye to provide better inputs to global
reionization simulations. This suite, carried out with the adaptive mesh
refinement code Enzo, is unprecedented in terms of their size and physical
ingredients. The simulations probe overdense, average, and underdense regions
of the universe of several hundred comoving Mpc, each yielding a sample of
over 3,000 halos in the mass range 10^7 - 10^{9.5}~\Ms at their final
redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the
effects of radiative and supernova feedback from 5,000 to 10,000 metal-free
(Population III) stars in each simulation. We find that halos as small as
10^7~\Ms are able to form stars due to metal-line cooling from earlier
enrichment by massive Population III stars. However, we find such halos do not
form stars continuously. Using our large sample, we find that the galaxy-halo
occupation fraction drops from unity at virial masses above 10^{8.5}~\Ms to
50\% at 10^8 ~\Ms and 10\% at 10^7~\Ms, quite independent of
redshift and region. Their average ionizing escape fraction is 5\% in the
mass range 10^8 - 10^9~\Ms and increases with decreasing halo mass below this
range, reaching 40--60\% at 10^7~\Ms. Interestingly, we find that the escape
fraction varies between 10--20\% in halos with virial masses \sim 3 \times
10^9~\Ms. Taken together, our results confirm the importance of the smallest
galaxies as sources of ionizing radiation contributing to the reionization of
the universe.Comment: 19 pages, 22 figures, 2 tables, replaced with accepted ApJ versio
- …