10 research outputs found

    A Lipopolysaccharide (LPS) inhalation model to characterise divergent innate cellular responses and presence of alveolar leak, early in the course of acute lung inflammation

    Get PDF
    M. D. Thesis.Acute respiratory distress syndrome (ARDS) is a common condition presenting to the intensive care unit (ICU) and is associated with high morbidity and mortality. Experimental models in humans using bacterial lipopolysaccharide (LPS, delivered by nebulised inhalation or bronchial instillation) create reproducible acute lung inflammation and can be used to model early stages of the pathological process leading to ARDS. A significant body of evidence already exists from animal and human studies suggesting LPS inhalation results in rapid release of pro-inflammatory cytokines and movement of innate immune cells (neutrophils and monocytes) into the alveolar space. The functional status of neutrophils in response to this stimulus is largely unknown, based on circumstantial evidence provided by predominant cytokines, chemokines and cell surface protein expression. Most studies rely on invasive assessment of the alveolar space using bronchoalveolar lavage (BAL), and imaging modalities have been poorly explored in LPS respiratory models. This thesis aimed to test the hypothesis that, following inhalation of LPS, neutrophils circulating within peripheral blood increase their capacity for phagocytosis and generation of reactive oxygen species (ROS), and that dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) detects early increases in pulmonary vascular permeability. Forty-nine healthy human volunteers were recruited to an LPS inhalation study. Volunteers underwent inhalation of 60μg of LPS or Saline via a nebuliser dosimeter, with peripheral blood sampling. A subset underwent DCE MRI scans and bronchoscopy with BAL. Functional assays of phagocytosis and respiratory burst activity were performed on isolated neutrophils from blood. Neutrophils demonstrated a trend towards increased phagocytosis following LPS inhalation (change from baseline of 3.6% versus 1.2% in control subjects, p=0.058). This was not supported by any change in respiratory burst activity or flow cytometry assessment of cell surface protein expression. Analysis of DCE MRI of the lungs proved difficult and was complicated by significant artefact from surrounding structures and respiratory motion. In conclusion, LPS inhalation did not significantly affect phagocytosis or respiratory burst activity of neutrophils in the systemic circulation. DCE MRI was unable to detect changes in vascular permeability following LPS inhalation above the background noise

    Randomised controlled trial of GM-CSF in critically ill patients with impaired neutrophil phagocytosis

    Get PDF
    Background. Critically ill patients with impaired neutrophil phagocytosis have significantly increased risk of nosocomial infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) improves phagocytosis by neutrophils ex vivo. This study tested the hypothesis that GM-CSF improves neutrophil phagocytosis in critically ill patients in whom phagocytosis is known to be impaired Methods. This was a multi-centre, phase 2a randomised, placebo-controlled clinical trial Using a personalised medicine approach, only critically ill patients with impaired neutrophil phagocytosis were included. Patients were randomised 1:1 to subcutaneous GM-CSF (3 microgrammws/kg/day) or placebo, once daily for 4 days. The primary outcome measure was neutrophil phagocytosis 2 days after initiation of GM-CSF. Secondary outcomes included neutrophil phagocytosis over time, neutrophil functions other than phagocytosis, monocyte HLA-DR expression, and safety. Results. Thirty-eight patients were recruited from 5 intensive care units (17 randomised to GM-CSF). Mean neutrophil phagocytosis at day 2 was 57.2% (SD 13.2%) in the GM-CSF group and 49.8% (13.4%) in the placebo group, p=0.73. The proportion of patients with neutrophil phagocytosis >50% at day 2, and monocyte HLA-DR, appeared significantly higher in the GM-CSF group. Neutrophil functions other than phagocytosis did not appear significantly different between the groups. The most common adverse event associated with GM-CSF was pyrexia. Conclusions. GM-CSF did not improve mean neutrophil phagocytosis at day 2, but was safe and appeared to increase the proportion of patients with adequate phagocytosis. The study suggests proof of principle for a pharmacological effect on neutrophil function in a subset of critically ill patients.This work was funded by a grant from the Medical Research Council (G1100233), with additional support from the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre. It was sponsored by Newcastle Universit

    Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia.

    Get PDF
    BACKGROUND: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare. OBJECTIVES: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP. METHODS: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >10(4) colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination. RESULTS: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%). CONCLUSIONS: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship

    Current status of lung transplantation

    No full text
    Lung transplantation is a well-established treatment option for selected patients with end-stage lung disease, leading to improved survival and improved quality of life. The last 20 years have seen a steady growth in number of lung transplantation procedures performed worldwide. The increase in clinical activity has been associated with tremendous progress in the understanding of cellular and molecular processes that limit both short- and long-term outcomes. This review gives a comprehensive overview of the current status of lung transplantation for the referring physician. It demonstrates that careful selection of potential recipients, optimisation of their condition prior to transplant, use of carefully assessed donor organs, excellent surgery and meticulous long-term follow-up are all essential ingredients in determining a successful outcome. </jats:p

    Improved survival following ward-based non-invasive pressure support for severe hypoxia in a cohort of frail patients with COVID-19: retrospective analysis from a UK teaching hospital

    No full text
    Since the outbreak of COVID-19 in China in December 2019, a pandemic has rapidly developed on a scale that has overwhelmed health services in a number of countries. COVID-19 has the potential to lead to severe hypoxia; this is usually the cause of death if it occurs. In a substantial number of patients, adequate arterial oxygenation cannot be achieved with supplementary oxygen therapy alone. To date, there has been no clear guideline endorsement of ward-based non-invasive pressure support (NIPS) for severely hypoxic patients who are deemed unlikely to benefit from invasive ventilation. We established a ward-based NIPS service for COVID-19 PCR-positive patients, with severe hypoxia, and in whom escalation to critical care for invasive ventilation was not deemed appropriate. A retrospective analysis of survival in these patients was undertaken. Twenty-eight patients were included. Ward-based NIPS for severe hypoxia was associated with a 50% survival in this cohort. This compares favourably with Intensive Care National Audit and Research Centre survival data following invasive ventilation in a less frail, less comorbid and younger population. These results suggest that ward-based NIPS should be considered as a treatment option in an integrated escalation strategy in all units managing respiratory failure secondary to COVID-19

    Exchange protein directly activated by cyclic AMP (EPAC) activation reverses neutrophil dysfunction induced by β<sub>2</sub>-agonists, corticosteroids, and critical illness

    No full text
    BACKGROUND: Neutrophils play a role in the pathogenesis of asthma, chronic obstructive pulmonary disease, and pulmonary infection. Impaired neutrophil phagocytosis predicts hospital-acquired infection. Despite this, remarkably few neutrophil-specific treatments exist. OBJECTIVES: We sought to identify novel pathways for the restoration of effective neutrophil phagocytosis and to activate such pathways effectively in neutrophils from patients with impaired neutrophil phagocytosis. METHODS: Blood neutrophils were isolated from healthy volunteers and patients with impaired neutrophil function. In healthy neutrophils phagocytic impairment was induced experimentally by using β2-agonists. Inhibitors and activators of cyclic AMP (cAMP)-dependent pathways were used to assess the influence on neutrophil phagocytosis in vitro. RESULTS: β2-Agonists and corticosteroids inhibited neutrophil phagocytosis. Impairment of neutrophil phagocytosis by β2-agonists was associated with significantly reduced RhoA activity. Inhibition of protein kinase A (PKA) restored phagocytosis and RhoA activity, suggesting that cAMP signals through PKA to drive phagocytic impairment. However, cAMP can signal through effectors other than PKA, such as exchange protein directly activated by cyclic AMP (EPAC). An EPAC-activating analog of cAMP (8CPT-2Me-cAMP) reversed neutrophil dysfunction induced by β2-agonists or corticosteroids but did not increase RhoA activity. 8CPT-2Me-cAMP reversed phagocytic impairment induced by Rho kinase inhibition but was ineffective in the presence of Rap-1 GTPase inhibitors. 8CPT-2Me-cAMP restored function to neutrophils from patients with known acquired impairment of neutrophil phagocytosis. CONCLUSIONS: EPAC activation consistently reverses clinical and experimental impairment of neutrophil phagocytosis. EPAC signals through Rap-1 and bypasses RhoA. EPAC activation represents a novel potential means by which to reverse impaired neutrophil phagocytosis

    The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles

    No full text
    corecore