33 research outputs found

    FIMCAR VII: Full-Width Test Procedure: Review and Metric Development

    Get PDF
    For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle’s frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The objectives of the work reported in this deliverable were to review existing full-width test procedures and their discussed compatibility metrics, to report recent activities and findings with respect to full-width assessment procedures and to assess test procedures and metrics. Starting with a review of previous work, candidate metrics and associated performance limits to assess a vehicle’s structural interaction potential, in particular its structural alignment, have been developed for both the Full Width Deformable Barrier (FWDB) and Full Width Rigid Barrier (FWRB) tests. Initial work was performed to develop a concept to assess a vehicle’s frontal force matching. However, based on the accident analyses performed within FIMCAR frontal force matching was not evaluated as a first priority and thus in line with FIMCAR strategy the focus was put on the development of metrics for the assessment of structural interaction which was evaluated as a first priority

    FIMCAR XIII: Cost Benefit Analysis

    Get PDF
    Although the number of road accident casualties in Europe is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities [EC 2012]. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car’s safety performance in frontal impacts is to improve its compatibility for car-to-car impacts and for collisions against objects and HGVs. Compatibility consists of improving both a car’s self and partner protection in a manner such that there is good interaction with the collision partner and the impact energy is absorbed in the car’s frontal structures in a controlled way which results in a reduction of injuries. Over the last ten years much research has been performed which has found that there are four main factors related to a car’s compatibility [Edwards 2003, Edwards 2007]. These are structural interaction potential, frontal force matching, compartment strength and the compartment deceleration pulse and related restraint system performance. The objective of the FIMCAR FP7 EC-project was to develop an assessment approach suitable for regulatory application to control a car’s frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation

    FIMCAR VIII: Full-Width Test Procedure: Updated Protocol

    Get PDF
    For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and the final report to the steering committee on frontal impact [Faerber 2007] and the FP5 VC-COMPAT[Edwards 2007] project activities, two test approaches were identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle’s frontal impact and compatibility crash safety. In addition an associated cost benefit analysis will be performed. In the FIMCAR Deliverable D 3.1 [Adolph 2013] the development and assessment of criteria and associated performance limits for the full width test procedure were reported. In this Deliverable D3.2 analyses of the test data (full width tests, car-to-car tests and component tests), further development and validation of the full width assessment protocol and development of the load cell and load cell wall specification are reported. The FIMCAR full-width assessment procedure consists of a 50 km/h test against the Full Width Deformable Barrier (FWDB). The Load Cell Wall behind the deformable element assesses whether or not important Energy Absorbing Structures are within the Common Interaction Zone as defined based on the US part 581 zone. The metric evaluates the row forces and requires that the forces directly above and below the centre line of the Common Interaction Zone exceed a minimum threshold. Analysis of the load spreading showed that metrics that rely on sum forces of rows and columns are within acceptable tolerances. Furthermore it was concluded that the Repeatability and Reproducibility of the FWDB test is acceptable. The FWDB test was shown to be capable to detect lower load paths that are beneficial in car-to-car impacts

    FIMCAR II: Accident Analysis

    Get PDF
    For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the EC funded FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in today’s research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle’s frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The specific objectives of the work reported in this deliverable were: • Determine if previously identified compatibility issues are still relevant in current vehicle fleet o Structural interaction o Frontal force matching o Compartment strength in particular for light cars • Determine nature of injuries and injury mechanisms o Body regions injured o Injury mechanism ▪ Contact with intrusion ▪ Contact ▪ Deceleration / restraint induced The main data sources for this report were the CCIS and Stats 19 databases from Great Britain and the GIDAS database from Germany. The different sampling and reporting schemes for the detailed databases (CCIS & GIDAS) sometimes do not allow for direct comparisons of the results. However the databases are complementary – CCIS captures more severe collisions highlighting structure and injury issues while GIDAS provides detailed data for a broader range of crash severities. The following results represent the critical points for further development of test procedures in FIMCAR

    Improvement of the protection of lower extremities of vulnerable road users in the event of a collision with motor vehicles

    No full text
    Since the beginning of the testing activities related to passive pedestrian safety, the width of the test area being assessed regarding its protection level for the lower extremities of vulnerable road users has been determined by geometrical measurements at the outer contour of the vehicle. During the past years, the trend of a decreased width of the lower extremity test and assessment area realized by special features of the outer vehicle frontend design could be observed. This study discusses different possibilities for counteracting this development and thus finding a robust definition for this area including all structures with high injury risk for the lower extremities of vulnerable road users in the event of a collision with a motor vehicle. While Euro NCAP is addressing the described problem by defining a test area under consideration of the stiff structures underneath the bumper fascia, a detailed study was carried out on behalf of the European Commission, aiming at a robust, worldwide harmonized definition of the bumper test area for legislation, taking into account the specific requirements of different certification procedures of the contracting parties of the UN/ECE agreements from 1958 and 1998. This paper details the work undertaken by BASt, also serving as a contribution to the TF-BTA of the UN/ECE GRSP, towards a harmonized test area in order to better protect the lower extremities of vulnerable road users. The German In-Depth Accident Database GIDAS is studied with respect to the potential benefit of a revised test area. Several practical options are discussed and applied to actual vehicles, investigating the differences and possible effects. Tests are carried out and the results studied in detail. Finally, a proposal for a feasible definition is given and a suggestion is made for solving possible open issues at angled surfaces due to rotation of the impactor. The study shows that, in principle, there is a need for the entire vehicle width being assessed with regard to the protection potential for lower extremities of vulnerable road users. It gives evidence on the necessity for a robust definition of the lower extremity test area including stiff and thus injurious structures at the vehicle frontend, especially underneath the bumper fascia. The legal definition of the lower extremity test area will shortly be almost harmonized with the robust Euro NCAP requirements, as already endorsed by GRSP, taking into account injurious structures and thus contributing to the enhanced protection of vulnerable road users. After finalization of the development of a torso mass for the flexible pedestrian legform impactor (FlexPLI) it is recommended to consider again the additional benefit of assessing the entire vehicle width

    Development of a target propulsion system for ASSESS

    No full text
    The ASSESS project is a collaborative project that develops test procedures for pre-crash safety systems like Automatic Emergency Braking (AEB). One key criterion for the effectiveness of e.g. AEB is reduction in collision speed compared to baseline scenarios without AEB. The speed reduction for a given system can only be determined in real world tests that will end with a collision. Soft targets that are crashable up to velocities of 80 km/h are state of the art for these assessments, but ordinary balloon cars are usually stationary targets. The ASSESS project goes one step further and defines scenarios with moving targets. These scenarios define vehicle speeds of up to 100 km/h, different collision scenarios and relative collision speeds of up to 80km/h. This paper describes the development of a propulsion system for a soft target that aims to be used with these demanding scenario specifications. The Federal Highway Research Institute- (BASt-) approach to move the target is a self-driving small cart. The cart is controlled either by a driver (open-loop control via remote-control) or by a computer (closed-loop control). Its weight is limited to achieve a good crashability without damages to the test vehicle. To the extent of our knowledge BASt- approach is unique in this field (other carts cannot move at such high velocities or are not crashable). This paper describes in detail the challenges and solutions that were found both for the mechanical construction and the implementation of the control and safety system. One example for the mechanical challenges is e.g. the position of the vehicle- center of gravity (CG). An optimum compromise had to be found between a low CG oriented to the front of the vehicle (good for driveability) and a high CG oriented to the rear of the vehicle (good for crashability). The soft target itself which is also developed within the ASSESS project will not be covered in detail as this is work of a project partner. Publications on this will follow. The paper also shows first test results, describes current limitations and gives an outlook. It is expected that the presented test tools for AEB and other pre-crash safety systems is introduced in the future into consumer testing (NCAP) as well as regulatory testing

    An open simulation approach to identify chances and limitations for vulnerable road user (VRU) active safety

    No full text
    It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model. This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations. The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems

    Recommendations for the safe handling of damaged electric vehicles after severe road traffic accidents.

    No full text
    The EVERSAFE project addressed many safety issues for electric vehicles including the crash and post-crash safety. The project reviewed the market shares of full electric and hybrid vehicles, latest road traffic accident data involving severely damaged electric vehicles in Europe, and identified critical scenarios that may be particular for electric vehicles. Also, recent results from international research on the safety of electric vehicles were included in this paper such as results from performed experimental abuse cell and vehicle crash tests (incl. non-standardized tests with the Mitsubishi i-MiEV and the BMW i3), from discussions in the UN IG REESS and the GTR EVS as well as guidelines (handling procedures) for fire brigades from Germany, Sweden and the United States of America. Potential hazards that might arise from damaged electric vehicles after severe traffic accidents are an emerging issue for modern vehicles and were summarized from the perspective of different national approaches and discussed from the practical view of fire fighters. Recent rescue guidelines were reviewed and used as the basis for a newly developed rescue procedure. The paper gives recommendations in particular towards fire fighters, but also to vehicle manufacturers and first-aiders

    Estimate of Potential Benefit for Europe of Fitting Autonomous Emergency Braking (AEB) Systems for Pedestrian Protection to Passenger Cars

    No full text
    <div><p><b>Objective:</b> The objective of the current study was to estimate the benefit for Europe of fitting precrash braking systems to cars that detect pedestrians and autonomously brake the car to prevent or lower the speed of the impact with the pedestrian.</p><p><b>Methods:</b> The analysis was divided into 2 main parts: (1) Develop and apply methodology to estimate benefit for Great Britain and Germany; (2) scale Great Britain and German results to give an indicative estimate for Europe (EU27). The calculation methodology developed to estimate the benefit was based on 2 main steps:</p><p>1. Calculate the change in the impact speed distribution curve for pedestrian casualties hit by the fronts of cars assuming pedestrian autonomous emergency braking (AEB) system fitment.</p><p>2. From this, calculate the change in the number of fatally, seriously, and slightly injured casualties by using the relationship between risk of injury and the casualty impact speed distribution to sum the resulting risks for each individual casualty.</p><p>The methodology was applied to Great Britain and German data for 3 types of pedestrian AEB systems representative of (1) currently available systems; (2) future systems with improved performance, which are expected to be available in the next 2–3 years; and (3) reference limit system, which has the best performance currently thought to be technically feasible.</p><p><b>Results:</b> Nominal benefits estimated for Great Britain ranged from £119 million to £385 million annually and for Germany from €63 million to €216 million annually depending on the type of AEB system assumed fitted. Sensitivity calculations showed that the benefit estimated could vary from about half to twice the nominal estimate, depending on factors such as whether or not the system would function at night and the road friction assumed. Based on scaling of estimates made for Great Britain and Germany, the nominal benefit of implementing pedestrian AEB systems on all cars in Europe was estimated to range from about €1 billion per year for current generation AEB systems to about €3.5 billion for a reference limit system (i.e., best performance thought technically feasible at present). Dividing these values by the number of new passenger cars registered in Europe per year gives an indication that the cost of a system per car should be less than ∼€80 to ∼€280 for it to be cost effective.</p><p><b>Conclusions:</b> The potential benefit of fitting AEB systems to cars in Europe for pedestrian protection has been estimated and the results interpreted to indicate the upper limit of cost for a system to allow it to be cost effective.</p></div

    A simulation-based approach for improved thorax injury risk function for the THOR ATD

    No full text
    Thorax injury is one of main causes of serious injury in frontal collisions, especially for elderly car occupants. The anthropometric test device (ATD) THOR‐M provides chest deflection measurements at multiple locations, to assess the risk of thorax injury. For this purpose e, risk functions are needed that relate the potential criteria based on multipoint chest deflection measurement to in jury risk. Different thorax injury criteria and risk functions for THOR have been proposed [2‐3]. The criteria and functions are based on the traditional approach to developing injury risk functions using matched ATD and PMHS tests by relating the injury (number of fractures) to injury criteria. Regarding these studies, some limitations have been identified, in particular concerning the loading conditions of the data used (mainly 3‐point‐belt loading, high loading severity, out‐of‐date ATD versions. To extend the data set and overcome these limitations, a new approach for improved thorax injury criteria was applied within the EC‐funded project SENIORS. The new approach is based on matched frontal impact sled computer simulations with a model representing the latest THOR‐M ATD version, and matching simulations with a human body model (HBM) representing an elderly car occupant
    corecore