202 research outputs found
Autotrophic Stoichiometry Emerging from Optimality and Variable Co-limitation
Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation, and co-limitation by multiple resources in autotrophs were in the past often described by heuristic formulations. In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects. The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1) that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2) that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s) while down-regulating machineries for the less limiting ones, which induces an ubiquitous response surface of growth rate over ambient resource levels. Our approach constitutes a basis for improved mechanistic understanding and modeling of acclimative processes in autotrophic organisms. It hence may serve future experimental and theoretical investigations on the role of those processes in aquatic and terrestrial ecosystems
The large scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea
The increasing demand for renewable energy is projected to result in a
40-fold increase in offshore wind electricity in the European Union by 2030.
Despite a great number of local impact studies for selected marine populations,
the regional ecosystem impacts of offshore wind farm structures are not yet
well assessed nor understood. Our study investigates whether the accumulation
of epifauna, dominated by the filter feeder Mytilus edulis (blue mussel), on
turbine structures affects pelagic primary productivity and ecosystem
functioning in the southern North Sea. We estimate the anthropogenically
increased potential distribution based on the current projections of turbine
locations and reported patterns of M. edulis settlement. This distribution is
integrated through the Modular Coupling System for Shelves and Coasts to
state-of-the-art hydrodynamic and ecosystem models. Our simulations reveal
non-negligible potential changes in regional annual primary productivity of up
to 8% within the offshore wind farm area, and induced maximal increases of the
same magnitude in daily productivity also far from the wind farms. Our setup
and modular coupling are effective tools for system scale studies of other
environmental changes arising from large-scale offshore wind-farming such as
ocean physics and distributions of pelagic top predators.Comment: 17 pages, 6 figures, re-revised manuscript submitted to Hydrobiologi
Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification
Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the replicates of the same CO2 treatment level. In experiments with multiple unresolved factors and a sub-optimal number of replicates, post-processing statistical inference tools might fail to detect an effect that is present. We propose that in such cases, data-based model analyses might be suitable tools to unearth potential responses to the treatment and identify the uncertainties that could produce the observed variability. As test cases, we used data from two independent mesocosm experiments. Both experiments showed high standard deviations and, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Conversely, our simulations showed earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggested that uncertainties in average cell size, phytoplankton biomass losses, and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimated the thresholds below which uncertainties do not escalate to high variability. This information might help in designing future mesocosm experiments and interpreting controversial results on the effect of acidification or other pressures on ecosystem function
Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling
Shelf and coastal sea processes extend from the atmosphere through the water
column and into the sea bed. These processes are driven by physical, chemical,
and biological interactions at local scales, and they are influenced by
transport and cross strong spatial gradients. The linkages between domains and
many different processes are not adequately described in current model systems.
Their limited integration level in part reflects lacking modularity and
flexibility; this shortcoming hinders the exchange of data and model components
and has historically imposed supremacy of specific physical driver models. We
here present the Modular System for Shelves and Coasts (MOSSCO,
http://www.mossco.de), a novel domain and process coupling system
tailored---but not limited--- to the coupling challenges of and applications in
the coastal ocean. MOSSCO builds on the existing coupling technology Earth
System Modeling Framework and on the Framework for Aquatic Biogeochemical
Models, thereby creating a unique level of modularity in both domain and
process coupling; the new framework adds rich metadata, flexible scheduling,
configurations that allow several tens of models to be coupled, and tested
setups for coastal coupled applications. That way, MOSSCO addresses the
technology needs of a growing marine coastal Earth System community that
encompasses very different disciplines, numerical tools, and research
questions.Comment: 30 pages, 6 figures, submitted to Geoscientific Model Development
Discussion
Response patterns of phytoplankton growth to variations in resuspension in the German Bight revealed by daily MERIS data in 2003 and 2004
Chlorophyll (chl a) concentration in coastal seas exhibits variability on various spatial and temporal scales. Resuspension of particulate matter can somewhat limit algal growth, but can also enhance productivity because of the intrusion of nutrient-rich pore water from sediments or bottom water layers into the whole water column. This study investigates whether characteristic changes in net phytoplankton growth can be directly linked to resuspension events within the German Bight. Satellite-derived chl a were used to derive spatial patterns of net rates of chl a increase/decrease (NR) in 2003 and 2004. Spatial correlations between NR and mean water column irradiance were analysed. High correlations in space and time were found in most areas of the German Bight (R2 > 0.4), suggesting a tight coupling between light availability and algal growth during spring. These correlations were reduced within a distinct zone in the transition between shallow coastal areas and deeper offshore waters. In summer and autumn, a mismatch was found between phytoplankton blooms (chl a > 6 mg m−3) and spring-tidal induced resuspension events as indicated by bottom velocity, suggesting that there is no phytoplankton resuspension during spring tides. It is instead proposed here that frequent and recurrent spring-tidal resuspension events enhance algal growth by supplying remineralized nutrients. This hypothesis is corroborated by a lag correlation analysis between resuspension events and in-situ measured nutrient concentrations. This study outlines seasonally different patterns in phytoplankton productivity in response to variations in resuspension, which can serve as a reference for modelling coastal ecosystem dynamics
Rapid aggregation of biofilm-covered microplastics with marine biogenic particles
Ocean plastic pollution has resulted in a substantial accumulation of microplastics in the marine environment. Today, this plastic litter is ubiquitous in the oceans, including even remote habitats such as deep-sea sediments and polar sea ice, and it is believed to pose a threat to ecosystem health. However, the concentration of microplastics in the surface layer of the oceans is considerably lower than expected, given the ongoing replenishment of microplastics and the tendency of many plastic types to float. It has been hypothesized that microplastics leave the upper ocean by aggregation and subsequent sedimentation. We tested this hypothesis by investigating the interactions of microplastics with marine biogenic particles collected in the southwestern Baltic Sea. Our laboratory experiments revealed a large potential of microplastics to rapidly coagulate with biogenic particles, which substantiates this hypothesis. Together with the biogenic particles, the microplastics efficiently formed pronounced aggregates within a few days. The aggregation of microplastics and biogenic particles was significantly accelerated by microbial biofilms that had formed on the plastic surfaces. We assume that the demonstrated aggregation behaviour facilitates the export of microplastics from the surface layer of the oceans and plays an important role in the redistribution of microplastics in the oceans
First Results of Modelling Benthos Influence on Sediment Entrainment Using a Generic Approach within the MOSSCO Framework
Sediment Transport and Morphodynamic
The Predominant Processes Controlling Vertical Nutrient and Suspended Matter Fluxes across Domains - Using the New MOSSCO System from Coastal Sea Sediments up to the Atmosphere
Integrated Modeling of Hydro-System
- …