3,968 research outputs found
Attosecond control of electron dynamics in carbon monoxide
Laser pulses with stable electric field waveforms establish the opportunity
to achieve coherent control on attosecond timescales. We present experimental
and theoretical results on the steering of electronic motion in a
multi-electron system. A very high degree of light-waveform control over the
directional emission of C+ and O+ fragments from the dissociative ionization of
CO was observed. Ab initio based model calculations reveal contributions to the
control related to the ionization and laser-induced population transfer between
excited electronic states of CO+ during dissociation
Finding Galaxy Groups In Photometric Redshift Space: the Probability Friends-of-Friends (pFoF) Algorithm
We present a structure finding algorithm designed to identify galaxy groups
in photometric redshift data sets: the probability friends-of-friends (pFoF)
algorithm. This algorithm is derived by combining the friends-of-friends
algorithm in the transverse direction and the photometric redshift probability
densities in the radial dimension. The innovative characteristic of our
group-finding algorithm is the improvement of redshift estimation via the
constraints given by the transversely connected galaxies in a group, based on
the assumption that all galaxies in a group have the same redshift. Tests using
the Virgo Consortium Millennium Simulation mock catalogs allow us to show that
the recovery rate of the pFoF algorithm is larger than 80% for mock groups of
at least 2\times10^{13}M_{\sun}, while the false detection rate is about 10%
for pFoF groups containing at least net members. Applying the algorithm
to the CNOC2 group catalogs gives results which are consistent with the mock
catalog tests. From all these results, we conclude that our group-finding
algorithm offers an effective yet simple way to identify galaxy groups in
photometric redshift catalogs.Comment: AJ accepte
Measurements of the electric quadrupole moment of Nb and Zr isotopes with modulated adiabatic fast passage after recoil implantation into hcp Co
0+ states and collective bands in 228Th studied by the (p,t) reaction
The excitation spectra in the deformed nucleus 228Th have been studied by
means of the (p,t)-reaction, using the Q3D spectrograph facility at the Munich
Tandem accelerator. The angular distributions of tritons were measured for
about 110 excitations seen in the triton spectra up to 2.5 MeV. Firm 0+
assignments are made for 17 excited states by comparison of experimental
angular distributions with the calculated ones using the CHUCK3 code.
Assignments up to spin 6+ are made for other states. Sequences of states are
selected which can be treated as rotational bands and as multiplets of
excitations. Moments of inertia have been derived from these sequences, whose
values may be considered as evidence of the two-phonon nature of most 0+
excitations. Experimental data are compared with interacting boson model and
quasiparticle-phonon model calculations and with experimental data for 229Pa.Comment: 21 pages, 14 figure
The XXZ model with anti-periodic twisted boundary conditions
We derive functional equations for the eigenvalues of the XXZ model subject
to anti-diagonal twisted boundary conditions by means of fusion of transfer
matrices and by Sklyanin's method of separation of variables. Our findings
coincide with those obtained using Baxter's method and are compared to the
recent solution of Galleas. As an application we study the finite size scaling
of the ground state energy of the model in the critical regime.Comment: 22 pages and 3 figure
Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices
In this paper the authors describe a theoretical simple statistical modelling
of relaxation process in metal-oxide semiconductor devices that governs its
degradation. Basically, starting from an initial state where a given number of
traps are occupied, the dynamics of the relaxation process is measured
calculating the density of occupied traps and its fluctuations (second moment)
as function of time. Our theoretical results show a universal logarithmic law
for the density of occupied traps , i.e., the degradation is logarithmic and its amplitude depends on the
temperature and Fermi Level of device. Our approach reduces the work to the
averages determined by simple binomial sums that are corroborated by our Monte
Carlo simulations and by experimental results from literature, which bear in
mind enlightening elucidations about the physics of degradation of
semiconductor devices of our modern life
Q-Value for the Fermi Beta-Decay of 46V
By comparing the Q-values for the 46Ti(3He,t)46V and 47Ti(3He,t)47}V
reactions to the isobaric analog states the Q-value for the superallowed
Fermi-decay of 46V has been determined as Q_{EC}(46V)=(7052.11+/-0.27) keV. The
result is compatible with the values from two recent direct mass measurements
but is at variance with the previously most precise reaction Q-value. As
additional input quantity we have determined the neutron separation energy
S_n(47Ti)=(8880.51+/-0.25) keV
- …
