3,461 research outputs found

    Liquid Feed Injection in a High Density Riser

    Get PDF
    First investigations on liquid feed injection in a high density circulating fluidized bed of FCC particles were done by means of fast responding thermocouples, capacitance and conductivity probes. The results imply very limited radial mixing between dry solids, wet solids and liquid for the injection parallel to the hot up-streaming gas-solid flow

    DESIGN OF NEW FLUIDIZED BED REACTORS FOR CVD - PROCESSES

    Get PDF
    A new concept of fluidized bed will be shown which can be used for various gas-tosolids reactions (e.g. chemical vapour deposition (CVD) reactions) with high throughput like the production of new materials. For the design and scale-up of the new bubbling fluidized bed with vertically aligned vertical nozzles the fluid dynamics of the fluidized beds have to be determined and analysed, especially the flow around the gas nozzles. A jet region around a single centrally arranged injector lance in a bubbling fluidized bed reactor is characterized by different parameters like solids concentration and jet gas distribution. It can be shown that – depending on the related parameter – different jet regions are obtained

    The XXZ model with anti-periodic twisted boundary conditions

    Full text link
    We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground state energy of the model in the critical regime.Comment: 22 pages and 3 figure

    GMRT Detection of HI 21 cm-line Absorption from the Peculiar Galaxy in Abell 2125

    Full text link
    Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km/s. The estimated column density of atomic Hydrogen is 0.7e22(Ts/100K) per sq. cm. The HI absorption is redshifted by ~ 400 km/s compared to the [OIII] emission line from this system. We attribute this to an in-falling cold gas, or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.Comment: 9 pages, 2 figures, uses jaa.sty (included

    First-order structural transition in the magnetically ordered phase of Fe1.13Te

    Full text link
    Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron X-ray powder diffraction investigations of single crystals Fe1+yTe (0.06 < y < 0.15) reveal a splitting of a single, first-order transition for y 0.12. Most strikingly, all measurements on identical samples Fe1.13Te consistently indicate that, upon cooling, the magnetic transition at T_N precedes the first-order structural transition at a lower temperature T_s. The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c-axis displays a small distortion close to T_N due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T_s. The lattice symmetry changes, however, only below T_s as indicated by powder X-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.Comment: 6 page

    SKS Splitting Beneath Mount St. Helens: Constraints on Subslab Mantle Entrainment

    Get PDF
    Observations of seismic anisotropy can provide direct constraints on the character of mantleflow in subduction zones, critical for our broader understanding of subduction dynamics. Here wepresent over 750 new SKS splitting measurements in the vicinity of Mount St. Helens in the Cascadiasubduction zone using a combination of stations from the iMUSH broadband array and Cascades VolcanoObservatory network. This provides the highest density of splitting measurements yet available inCascadia, acting as a focused“telescope”for seismic anisotropy in the subduction zone. We retrieve spatiallyconsistent splitting parameters (mean fast directionΦ: 74°, mean delay time∂t: 1.0 s) with the azimuthaloccurrence of nulls in agreement with the fast direction of splitting. When averaged across the array, a90° periodicity in splitting parameters as a function of back azimuth is revealed, which has not beenrecovered previously with single‐station observations. The periodicity is characterized by a sawtooth patterninΦwith a clearly defined 45° trend. We present new equations that reproduce this behavior based uponknown systematic errors when calculating shear wave splitting from data with realistic seismic noise.The corrected results suggest a single layer of anisotropy with an ENE‐WSW fast axis parallel to the motionof the subducting Juan de Fuca plate; in agreement with predictions for entrained subslab mantleflow. Thesplitting pattern is consistent with that seen throughout Cascadia, suggesting that entrainment of theunderlying asthenosphere with the subducting slab is coherent and widespread.The broadband seismic component of the iMUSH project was supported by National Science Foundation grants EAR‐1144568, EAR‐1144351, EAR‐1460291, and EAR‐1444275. CME acknowledges support from the Australian Research Council (DE190100062). We thank the 2017 IRIS undergraduate summer intern program for providing support to A. W. to work with E. A. W. at the University of Washington. The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR‐1261681
    corecore