12 research outputs found

    THE DETERMINATION OF ETHYL P-METHOXY CINNAMATE IN KAEMPFERIA GALANGA L. RHIZOME EXTRACT HARVESTED IN RAINY AND DRY SEASONS

    Get PDF
    Objective: Kaempferia galanga L. rhizome (KGR), has been empirically used in Indonesia, particularly by Javanese, to cure inflammation. KGR contains various secondary metabolites which explain its pharmacology activities, among them is ethyl p-methoxycinnamate (EPMC). However, due to the different seasons of our country, the yield of extraction is often unalike. In this work, we determined the percentage of yield (w/w), the water content (thermogravimetric method), and the concentration of EPMC in the Ethanol extract of Kaempferia galanga L. Rhizome (EEKG) harvested from the rainy (EEKG-R) and dry seasons (EEKG-D). Methods: The sun-dried rhizomes were cold macerated for 3x24 h with 70% ethanol, filtered, and the solvent was evaporated at 40-45 °C until a viscous extract was obtained. The determination of EPMC in the extract was carried out using the RP-HPLC standard addition method. Detection was set at 308 nm; injection volume 20 µl; flow rate 1.0 ml/min. The column used is C18 (length 250 mm, internal diameter 4.6 mm, particle size 5 µm). Results: The yield of EEKG-R (harvested in the rainy season) = 14.56% w/w, water content = 4.37%, and the EPMC = 0.01%. Meanwhile the yield of EEKG-D (harvested in the dry season) = 5.79% w/w, water content = 18.76%, and the EPMC = 0.001%. Conclusion: Different climates affect the percentage yield and the quality of the extract. In our work, the EEKG-R (harvested in the rainy season) revealed a better quality compared to that of EEKG-D (harvested in the dry season) This study gives important information to standardize and optimize the harvest time of KG rhizomes for drugs development, which are strongly influenced by seasonal differences

    Oral Diseases Group of Asia: Time to Blossom

    No full text

    Periodontal disease in HIV/AIDS.

    No full text
    Since the early 1990's, the death rate from AIDS among adults has declined in most developed countries, largely because of newer antiretroviral therapies and improved access to these therapies. In addition, from 2006 to 2011, the total number of new cases of HIV infection worldwide has declined somewhat and has remained relatively constant. Nevertheless, because of the large numbers of existing and new cases of HIV infection, the dental practitioner and other healthcare practitioners will still be required to treat oral and periodontal conditions unique to HIV/AIDS as well as conventional periodontal diseases in HIV-infected adults and children. The oral and periodontal conditions most closely associated with HIV infection include oral candidiasis, oral hairy leukoplakia, Kaposi's sarcoma, salivary gland diseases, oral warts, other oral viral infections, linear gingival erythema and necrotizing gingival and periodontal diseases. While the incidence and prevalence of these oral lesions and conditions appear to be declining, in part because of antiretroviral therapy, dental and healthcare practitioners will need to continue to diagnose and treat the more conventional periodontal diseases in these HIV-infected populations. Finding low-cost and easily accessible and acceptable diagnostic and treatment approaches for both the microbiological and the inflammatory aspects of periodontal diseases in these populations are of particular importance, as the systemic spread of the local microbiota and inflammatory products of periodontal diseases may have adverse effects on both the progression of HIV infection and the effectiveness of antiretroviral therapy approaches. Developing and assessing low-cost and accessible diagnostic and treatment approaches to periodontal diseases, particularly in developing countries, will require an internationally coordinated effort to design and conduct standardized clinical trials

    Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection

    No full text
    Objectives: Ellagic acid (EA) has a wide range of biological effects. The purpose of this study was to investigate the in vitro effects of EA on HIV-1 replication, viral enzyme activity and cytokine secretion by infected cells. Methods: The anti-HIV-1 activity of EA in solution was determined in vitro using the infection of TZM-bl cells by the nano luciferase-secreting R5-tropic JRCSF strain of HIV-1, which allows for the quantification of viral growth by measuring nano luciferase in the culture supernatants. The effect of EA on the cytokine secretion of TZM-bl cells was determined by a multiplexed bead array after 48 h of HIV-1 exposure. The antiviral effect of EA in the gel formulation (Ellagel), as would be used for vaginal application, was investigated by the inhibition of infection of UC87.CD4.CCR5 cells with R5-tropic pBaLEnv-recombinant HIV-1. Results: EA in solutions of up to 100 µM was not toxic to TZM-bl cells. EA added either 1 h before or 4 h after HIV-1 exposure suppressed the replication of R5-tropic HIV-1 in TZM-bl cells in a dose-dependent manner, with up to 69% inhibition at 50 µM. EA-containing solutions also exhibited a dose-dependent inhibitory effect on HIV-1 replication in U87 cells. When EA was formulated as a gel, Ellagel containing 25 µM and 50 µM EA inhibited HIV-1 replication in U87 cells by 56% and 84%, respectively. In assays of specific HIV-1 enzyme activity, Ellagel inhibited HIV-1 integrase but not protease. EA did not significantly modulate cytokine secretion. Conclusions: We conclude that EA either in solution or in a gel form inhibits HIV infection without adverse effects on target cells. Thus, gel containing EA can be tested as a new microbicide against HIV infection
    corecore