95 research outputs found

    System Size Stochastic Resonance from the Viewpoint of the Nonequilibrium Potential

    Full text link
    We analyze the phenomenon of system size stochastic resonance in a simple spatially extended system by exploiting the knowledge of the nonequilibrium potential. We show that through the analysis of that potential, and particularly its "symmetry", we can obtain a clear physical interpretation of this phenomenon in a wide class of extended systems, and also analyze, for the same simple model, the effect of a general class of boundary conditions (albedo) on this kind of phenomena.Comment: 10 pages, 3 figures, submitted to Phys. Rev. Let

    Variational Formulation for the KPZ and Related Kinetic Equations

    Full text link
    We present a variational formulation for the Kardar-Parisi-Zhang (KPZ) equation that leads to a thermodynamic-like potential for the KPZ as well as for other related kinetic equations. For the KPZ case, with the knowledge of such a potential we prove some global shift invariance properties previously conjectured by other authors. We also show a few results about the form of the stationary probability distribution function for arbitrary dimensions. The procedure used for KPZ was extended in order to derive more general forms of such a functional leading to other nonlinear kinetic equations, as well as cases with density dependent surface tension.Comment: RevTex, 8pgs, double colum

    Aspects of stochastic resonance in reaction-diffusion systems: The nonequilibrium-potential approach

    Full text link
    We analyze several aspects of the phenomenon of stochastic resonance in reaction-diffusion systems, exploiting the nonequilibrium potential's framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carried out in the context of a simplified scalar model, for which stationary patterns can be found analytically. We first show how system-size stochastic resonance arises naturally in this framework, and then how the phenomenon of array-enhanced stochastic resonance can be further enhanced by letting the diffusion coefficient depend on the field. A yet less trivial generalization is exemplified by a stylized version of the FitzHugh-Nagumo system, a paradigm of the activator-inhibitor class. After discussing for this system the second aspect enumerated above, we derive from it -through an adiabatic-like elimination of the inhibitor field- an effective scalar model that includes a nonlocal contribution. Studying the role played by the range of the nonlocal kernel and its effect on stochastic resonance, we find an optimal range that maximizes the system's response.Comment: 16 pages, 15 figures, uses svjour.cls and svepj-spec.clo. Minireview to appear in The European Physical Journal Special Topics (issue in memory of Carlos P\'erez-Garc\'{\i}a, edited by H. Mancini

    Stochastic resonance in bistable systems: The effect of simultaneous additive and multiplicative correlated noises

    Full text link
    We analyze the effect of the simultaneous presence of correlated additive and multiplicative noises on the stochastic resonance response of a modulated bistable system. We find that when the correlation parameter is also modulated, the system's response, measured through the output signal-to-noise ratio, becomes largely independent of the additive noise intensity.Comment: RevTex, 10 pgs, 3 figure

    Noise effects in extended chaotic system: study on the Lorenz'96 model

    Get PDF
    We investigate the effects of a time-correlated noise on an extended chaotic system. The chosen model is the Lorenz'96, a kind of toy model used for climate studies. The system is subjected to both temporal and spatiotemporal perturbations. Through the analysis of the system's time evolution and its time correlations, we have obtained numerical evidence for two stochastic resonance-like behaviors. Such behavior is seen when a generalized signal-to-noise ratio function are depicted as a function of the external noise intensity or as function of the system size. The underlying mechanism seems to be associated to a noise-induced chaos reduction. The possible relevance of those findings for an optimal climate prediction are discussed, using an analysis of the noise effects on the evolution of finite perturbations and errors.Comment: To appear in Statistical Mechanics Research Focus, Special volume (Nova Science Pub., NY, in press) (LaTex, 16 pgs, 14 figures

    Noise-induced phase transitions: Effects of the noises' statistics and spectrum

    Full text link
    The local, uncorrelated multiplicative noises driving a second-order, purely noise-induced, ordering phase transition (NIPT) were assumed to be Gaussian and white in the model of [Phys. Rev. Lett. \textbf{73}, 3395 (1994)]. The potential scientific and technological interest of this phenomenon calls for a study of the effects of the noises' statistics and spectrum. This task is facilitated if these noises are dynamically generated by means of stochastic differential equations (SDE) driven by white noises. One such case is that of Ornstein--Uhlenbeck noises which are stationary, with Gaussian pdf and a variance reduced by the self-correlation time (\tau), and whose effect on the NIPT phase diagram has been studied some time ago. Another such case is when the stationary pdf is a (colored) Tsallis' (q)--\emph{Gaussian} which, being a \emph{fat-tail} distribution for (q>1) and a \emph{compact-support} one for (q<1), allows for a controlled exploration of the effects of the departure from Gaussian statistics. As done before with stochastic resonance and other phenomena, we now exploit this tool to study--within a simple mean-field approximation and with an emphasis on the \emph{order parameter} and the ``\emph{susceptibility}''--the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small (\tau), it is shown that whereas fat-tail noise distributions ((q>1)) counteract the effect of self-correlation, compact-support ones ((q<1)) enhance it. Also, an interesting effect on the susceptibility is seen in the last case.Comment: 6 pages, 10 figures, uses aipproc.cls, aip-8s.clo and aipxfm.sty. To appear in AIP Conference Proceedings. Invited talk at MEDYFINOL'06 (XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics

    Diffusion in Fluctuating Media: The Resonant Activation Problem

    Full text link
    We present a one-dimensional model for diffusion in a fluctuating lattice; that is a lattice which can be in two or more states. Transitions between the lattice states are induced by a combination of two processes: one periodic deterministic and the other stochastic. We study the dynamics of a system of particles moving in that medium, and characterize the problem from different points of view: mean first passage time (MFPT), probability of return to a given site (Ps0P_{s_0}), and the total length displacement or number of visited lattice sites (Λ\Lambda). We observe a double {\it resonant activation}-like phenomenon when we plot the MFPT and Ps0P_{s_0} as functions of the intensity of the transition rate stochastic component.Comment: RevTex, 15 pgs, 8 figures, submitted to Eur.Phys.J.

    Spontaneous emergence of contrarian-like behaviour in an opinion spreading model

    Full text link
    We introduce stochastic driving in the Sznajd model of opinion spreading. This stochastic effect is meant to mimic a social temperature, so that agents can take random decisions with a varying probability. We show that a stochastic driving has a tremendous impact on the system dynamics as a whole by inducing an order-disorder nonequilibrium phase transition. Interestingly, under certain conditions, this stochastic dynamics can spontaneously lead to agents in the system who are analogous to Galam's contarians.Comment: 4 eps figs, EuroPhys Lett styl
    • …
    corecore