241 research outputs found

    van der Waals phase transition in protein solutions

    Get PDF
    The van der Waals equation of state for imperfect gases is applied to solutions of macromolecules, especially to explain the fluid-fluid phase transition in protein solutions, a phenomenon of much interest in relation to protein crystallization. The van der Waals b parameter corresponds to the total excluded volume per pair of molecules and can be calculated from independently known molecular properties. It is comprised of terms resulting from hard-sphere and net charge-charge interactions. The experimentally determined second virial coefficient B can then be used to obtain the equilibrium constant for dimerization K, a phenomenologically accessible measure of the van der Waals a parameter. Sedimentation equilibrium is recommended as the technique for measuring B most accurately. More general results are used to make a minor quantitative correction to the van der Waals prediction concerning the criterion for the fluid-fluid phase transition. Calculations of the effect of inert co-solutes on the phase transition may prove useful in choosing crystallization conditions

    Self-association of troponin

    Full text link

    Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis

    Get PDF
    Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium in the analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is particularly powerful when used in conjunction with its sister technique, namely sedimentation velocity analysis. We describe key approaches now available and their application to the characterisation of antibodies polysaccharides and glycoconjugates. We indicate how major complications such as thermodynamic non-ideality can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor DonWinzor over several decades of research
    • …
    corecore