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The van der Waals equation of state for imperfect gases is applied to solutions of

macromolecules, especially to explain the fluid–fluid phase transition in protein

solutions, a phenomenon of much interest in relation to protein crystallization.

The van der Waals b parameter corresponds to the total excluded volume per

pair of molecules and can be calculated from independently known molecular

properties. It is comprised of terms resulting from hard-sphere and net charge–

charge interactions. The experimentally determined second virial coefficient B2

can then be used to obtain the equilibrium constant for dimerization K2, a

phenomenologically accessible measure of the van der Waals a parameter.

Sedimentation equilibrium is recommended as the technique for measuring B2

most accurately. More general results are used to make a minor quantitative

correction to the van der Waals prediction concerning the criterion for the fluid–

fluid phase transition. Calculations of the effect of inert co-solutes on the phase

transition may prove useful in choosing crystallization conditions.

1. Introduction

Most attempts to understand the complex process of protein crys-

tallization begin with some consideration of the character and

strength of the forces of interaction between individual molecules.

The thermodynamic parameter that provides a direct measure of the

net effect of such forces is the second virial coefficient determined

from osmotic pressure measurements, light-scattering experiments,

sedimentation-equilibrium studies and results obtained by using a

range of other techniques. Indeed, the so-called ‘crystallization slot’ is

characterized in terms of a narrow range of values of this parameter

(George & Wilson, 1994; George et al., 1997; Bonneté & Vivarès,

2002; Demoruelle et al., 2002) and it has become quite routine to use

the second virial coefficient as a diagnostic parameter for protein

crystallization (Bonneté et al., 1997; Haas et al., 1999).

The second virial coefficient is a measure of the net average effect

of the forces between an isolated pair of molecules in an infinite

volume. It does not supply direct information about collective

behaviour of molecules that results in a thermodynamic phase tran-

sition such as crystallization. It is therefore perhaps surprising that

such a coarse measure of the overall strength of intermolecular forces

is of much value in this context. However, it has been known since the

time of van der Waals (1873) that combined consideration of weak

attractive intermolecular forces and the finite size of molecules is

sufficient to explain why a gas condenses to form a liquid when it is

cooled. Indeed, by separating the opposing contributions to the

second virial coefficient of intermolecular attraction and volume

exclusion, van der Waals was able to predict the existence of the

critical point characterizing the onset of condensation.

The second virial coefficient for macromolecules in solution must

be defined with some care because of the different conditions under

which the concentration of the solute can be varied (Winzor & Wills,

1994). Osmotic equilibrium often presents a convenient set of stan-

dard conditions to which changes in thermodynamic quantities can be

referred and choice of this standard allows the establishment of a

formal equivalence between the theories of imperfect gases and non-

ideal solutions (Hill, 1959). In that regard, as we show here, van der
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Waals theory is directly applicable to the description of a phase

transition in the behaviour of solutions of macromolecules. While the

predicted phase transition is of the fluid–fluid type rather than crys-

tallization, such a transition serves as a good indicator of conditions

favourable for crystallization. The protein apoferritin (Tanaka &

Ataka, 2002) provides a pertinent example.

The connection between the second virial coefficient and the gas–

liquid critical point, analogous to the fluid–fluid transition in solutions

of macromolecules, has been considered in some detail by Vlie-

genthart & Lekkerkerker (2000). We adopt the view that the simplest

possible interpretation will be of greatest benefit provided it has a

sound conceptual basis and offers good comparative judgments of

how solution conditions may be changed to assist crystallization.

Therefore, rather than concentrating on the details of protein–

protein and protein–polymer interaction potentials (Acedo & Santos,

2001; Rosenbaum et al., 1999), we approach the problem in terms of

van der Waals’ approximate equation of state and enquire into the

sensitivity of the predicted phase transition to varying laboratory

conditions.

2. van der Waals theory

The van der Waals equation of state for an imperfect gas,

Pþ
a

v2

� �
ðv� bÞ ¼ RT; ð1Þ

is an extension of the ideal gas equation Pv = RT written in terms of

the molar volume v = V/n; V is the volume of the system, n the

number of moles of gas, P is the pressure and T is the temperature.

The van der Waals parameters a and b make corrections for prop-

erties of real molecules ignored in the kinetic theory of a perfect gas.

The a parameter measures the spatially averaged potential energy per

mole of gas owing to weak short-range forces between the molecules,

a ¼ �2�L2
R1
�

uðrÞr2 dr; ð2Þ

where L is Avogadro’s number and the energy of interaction u(r) of

two molecules separated by a centre-to-centre distance r is assumed

to be small compared with thermal energy. The b parameter adjusts

the available volume by subtracting from the true volume the molar

excluded volume for a pair of molecules,

b ¼
2�L

3
�3; ð3Þ

expressed in terms of the molecular diameter �.

A more general formulation of the equation of state of an

imperfect gas is the virial form

P ¼ RTCð1þ B2C þ B3C2
þ . . .Þ; ð4Þ

which allows the pressure to be approximated by the addition of

terms of increasing order in the molar concentration C = 1/v. The van

der Waals equation can be reforged in this way, giving, to first order in

C,

P ¼ RTC½1þ ðb� a=RTÞC þ . . .�: ð5Þ

What is pleasing about the virial expansion is that there is an exact

statistical mechanical theory for the calculation of the coefficients B2,

B3 etc. In the case of a spherically symmetric interaction between

molecules, the expression for the second virial coefficient is

B2 ¼ �2�L
R1
0

fexp½�uðrÞ=kT� � 1gr2 dr; ð6Þ

where k is Boltzmann’s constant and u(r) is the energy of interaction

between two molecules as in (2). The van der Waals form can be

retrieved by considering a potential of interaction such as the square

well,

uðrÞ ¼
1 0 < r < �
�" � < r < ��
0 �� < r < 1

(
: ð7Þ

where " is the depth of the attractive energy well and (� � 1)� is its

width. Integration over the range 0 < r < � of the hard-sphere

interaction gives the excluded volume b (3). Under the approxima-

tion " << kT, further integration over the range � < r < �� yields

a ¼
2�L2

3
�3"ð�3

� 1Þ ð8Þ

for a weak square-well potential. Formally, the definition of a as a

constant requires only that u(r) << kT in the range r > � and that the

integral over u(r) converges as r!1. The case of an anisotropic

potential has been discussed by Kern & Frenkel (2003).

It must be emphasized that the second virial coefficient B2 does not

provide a direct measure of the relative magnitudes of the van der

Waals parameters a and b; it measures only the difference b � a/RT.

In the following, we consider how the cooperative interactions

involved in phase transitions are affected by the relative magnitudes

of a and b, reflecting a balance between forces of attraction and

repulsion. We seek to improve on the ‘crystallization slot’ approach

that relies on consideration of the net effect of opposing forces.

3. Solutions of macromolecules

These results can be applied directly to the description of macro-

molecules in solution. We consider a solution comprised of a

macromolecular solute A at a molar concentration CA and a solvent s.

The osmotic pressure of the solution is an artificial comparative

parameter defined as the pressure difference through which pure

solvent must be raised at constant temperature to render its chemical

potential �s equal to that of the solvent component in the solution,

�sðP;CAÞ ¼ �sðP��; 0Þ ¼ �sðP; 0Þ �
RP

P��

�VVs dP: ð9Þ

Here, �VVsðP;TÞ= ð@�s=@PÞT is the partial molar volume of the solvent.

For an ideal solution, use of the Gibbs–Duhem relation gives

� = RTCA analogous to the ideal gas equation and application of the

van der Waals ansatz may be expected to yield

ð�þ aC2
AÞ

1

CA

� b

� �
¼ RT: ð10Þ

In (10), aC2
A must represent the lowering of osmotic pressure below

the level expected for an ideal solution owing to inter-molecular

attraction and b should measure the molar excluded volume per pair

of macromolecules (3). If the weak attraction between molecules

results in a small equilibrium concentration C2 of dimers present in

the solution, then the expected reduction in the osmotic pressure will

be �� = RTC2 because for every dimer formed the number of

osmotically active macromolecules in solution will be reduced by one.

The constant K2 for an ideal dimerization reaction defines the ratio of

concentrations K2 = C2/C2
1, where C1 represents the molar concen-

tration of remaining monomers C1 = CA � 2C2. In the case that

C2 << C1, the approximation C1 ’ CA yields �� = RTK2C2
A,

suggesting the exceedingly simple result

a ¼ RTK2 ð11Þ

for the van der Waals representation, correct to first order in C2.
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3.1. Virial expansion

A rigorous statistical mechanical description of the osmotic pres-

sure of a solution of macromolecules yields the virial expansion

� ¼ RTCAð1þ B2CA þ B3C2
A þ . . .Þ; ð12Þ

where the coefficients B2, B3 etc. now reflect the potential of mean

force for clusters of solute molecules under conditions of constant

chemical potential of solvent (Hill, 1959). If the attractive interac-

tions between solute molecules are of very short range, having effect

only when the molecules are more or less in contact, then it is

reasonable to think in terms of aggregates, dimers, trimers etc. of the

basic macromolecules (monomers). The definition of aggregates

arising as a result of forces between molecules of a single chemical

component is an extra-thermodynamic exercise (Hill & Chen, 1973).

The notional separation between ‘associative forces’ and ‘non-

associative forces’ is completely arbitrary but it can facilitate inter-

pretation of measurements of the physical properties of a system.

The osmotic pressure of a system containing multiple macro-

molecular species is given by

� ¼ RT
P
m

Cm þ
P
fm;lg

BmlCmCl þ
P
fm;l;kg

BmlkCmClCk

 !
;

m; l; k . . . 2 f1; 2 . . .g; ð13Þ

where the sets {m, l} etc. run over all combinations rather than

permutations of distinct indices and proper care must be taken to

reckon with identity of indices in the definition of the virial coeffi-

cients (Hill & Chen, 1973; Wills & Winzor, 2002). Using ‘1’ for

monomer, ‘2’ for dimer etc., the formation of an aggregate Am of m

monomers A through the equilibrium process mA$ Am is governed

by a constant

Km ¼ zm=zm
1 ; ð14Þ

where zm = �mCm is the thermodynamic activity of Am in the system

and �m is the corresponding activity coefficient defined in terms of the

chemical potential as

�mðT; �s;C1;C2 . . .Þ ¼ �0
mðT; �sÞ þ RT ln �mðC1;C2 . . .ÞCm: ð15Þ

By using appropriate expansions of the activity coefficients and

Cm’KmCm
1 as allowed, it is possible to rewrite (13) correctly as a sum

of terms in increasing orders of the original base molar concentration

of the solute component, CA = C1 + 2C2 + 3C3 + . . . ,

� ¼ RTCA½1þ ðB
�
11 � K2ÞCA þ . . .�; ð16Þ

which gives, in relation to the original virial expansion,

B2 ¼ B�11 � K2: ð17Þ

Details of the derivation can be found elsewhere (Hill & Chen, 1973;

Wills & Winzor, 2002). The modified virial coefficients B�ml etc. are

specified in relation to integrals such as that in (6) as arising exclu-

sively from the operation of notional non-associative forces between

aggregates m and l. In particular, the coefficient B�11 arises from non-

associative forces acting between two monomers, m = 1 and l = 1, and

the effect of associative forces, the van der Waals and other forces of

attraction at close range between two monomers (Malfois et al., 1996)

is already taken into account through the definition of the dimer-

ization constant K2. As expected, (16) can be interpreted in terms of

van der Waals theory (10), correct to first order in CA, simply by

making a� RTK2 and b� B�11. Alternatively, K2 = �L�3/6� relates K2

to the ‘stickiness’ parameter � defined for the adhesive hard-sphere

potential of Baxter (1968).

3.2. Electrostatic repulsion

Globular proteins usually carry a net charge when the pH differs

appreciably from the protein’s pI. This necessitates consideration of

electrostatic repulsion between like molecules. Such generalized

repulsion can be taken into account as non-associative forces which

make a contribution to B�11 in addition to that arising from the hard-

sphere force between molecules. Electrostatic repulsion between

proteins is often represented by a spherically symmetric DLVO

potential of the form

uðrÞ ¼

1 0 < r < �
Q2

Dð1þ ��=2Þ2
exp½��ðr� �Þ�

r
� < r < 1

(
; ð18Þ

where Q is the surface charge on the molecule, D the dielectric

constant of the medium and � is the Debye–Hückel inverse-screening

length of the electrolytic solvent medium. In the expression for the

second virial coefficient, exp[�u(r)/kT] can be thought of as a ratio of

Boltzmann factors expressing the ratio of the probability of finding

two molecules with some finite energy of interaction u(r) relative to

the probability of finding them far apart where u(r) = 0 and

exp[�u(r)/kT] = 1. In that case, where u(r) > 0 the Mayer f-function

f(r) = exp[�u(r)/kT] � 1 is a measure of the probability that one

particle is excluded from the space at a distance r from another

particle. The integral over all space B�11 is then the average of the f-

function over all configurations and can be interpreted as the total

excluded volume per pair of molecules. In the low-energy short

screening-length limit, f(r) = �u(r)/kT and �� << 1, we obtain

through integration of (6) the familiar result

B�11 ¼
2�L

3
�3
þ

Z2

4I

1þ ��

ð1þ ��=2Þ2

� �
; ð19Þ

where Z is the number of electronic charges e on the protein and I is

the solvent ionic strength, related to � through � = (8�e2I/DkT)1/2.

(19) has been shown to give an excellent description of the ionic

strength dependence of the second virial coefficient for lysozyme at

pH 4.5 (Wills et al., 2000).

3.3. Use of sedimentation equilibrium

Microchip self-interaction chromatography can be used rapidly to

obtain an estimate of the second virial coefficient through an

empirically established correlation with the chromatographic k0

parameter (Garcia et al., 2003), but sedimentation equilibrium

provides a way to measure B2 accurately and unambiguously: through

analysis of c(r), the experimental trace of concentration versus radial

distance (Wills & Winzor, 2002). The condition for sedimentation

equilibrium is most conveniently written as zA(r) = z0
A (r), where zA

is the osmotic activity defined in relation to (15), z0
A is the nominal

value of zA at the centre of rotation, in practice a fitting parameter,

and

 ðrÞ ¼ exp½MAð1� �vvA�sÞ!
2r2=2RT� ð20Þ

represents a rescaling of r in terms of the radial frequency !, the

solvent density �s and the partial specific volume �vvA and molar mass

MA of the protein. By fitting the experimental trace directly to the

form

CAðrÞ ¼ z0
A ðrÞ � 2B2½z

0
A ðrÞ�

2
þ . . . ; ð21Þ

B2 can be determined quite accurately. Calculation of B�11 based on

(19) and prior knowledge of the molecular properties of the protein

(�, MA, �vvA, Z) under the relevant solvent conditions (�s, I, D) then

allows the effect of attractive interactions to be determined as a value

of K2.
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4. van der Waals phase transition

The most important outcome of van der Waals theory of an imperfect

gas is the prediction of a critical point below which the gas condenses

to form a liquid. At the critical point the molar volume, pressure and

temperature have values

vc ¼ 3b; Pc ¼
a

27b2
; Tc ¼

8a

27Rb
: ð22Þ

The van der Waals parameters allow for a quite satisfactory first

description of the condensation of simple gases. In practice, measured

values of vc and Pc are used to estimate the molecular quantities a and

b rather than specifying these in terms of nominal parameters such as

�, " and � appearing in (3) and (8).

4.1. Protein solutions

Applying van der Waals theory to solutions of macromolecules we

describe the fluid–fluid phase transition that often precedes protein

crystallization. In the following, it is important to bear in mind that

the empirically available second virial coefficient B2 for a macro-

molecular solute is actually the difference between B�11 and K2 (17).

Therefore, rather than concentrating on the absolute magnitude of B2

in relation to predicting the conditions for protein crystallization

(George & Wilson, 1994), we will focus attention on the relative

contributions due to opposing associative and non-associative forces.

4.1.1. Exemplary protein. We first consider haemoglobin as an

exemplary globular protein. Its effective hydrodynamic diameter is

� = 6.26 nm, giving a hard-sphere contribution of Bhs
11 ’ 309 l mol�1 to

the second virial coefficient. For a critical temperature Tc ’ 313 K,

sufficiently high to place laboratory conditions in the order–disorder

equilibrium region of the phase diagram, a dimerization constant of

magnitude K2 ’ 1000 l mol�1 would be required, implying a critical

osmotic pressure �c ’ 1.05 kPa and a critical concentration Cc = 1/vc

as high as 1.1 mM ’ 70 g l�1. Is this prediction consistent with

observation? Under conditions where haemoglobin is uncharged (pH

7.4 and 0.156 I), the dimerization constant has been determined to be

only of the order 100 l mol�1 (Winzor & Wills, 2003). So, it is not

surprising that under these conditions at a temperature of 293 K the

protein has solubility beyond 1.6 mM ’ 120 g l�1 with no evidence of

phase separation. Clearly, the van der Waals prediction of a phase

transition is consistent with these observations and we suggest that it

may prove useful for calculating comparative estimates of the

conditions for the fluid–fluid equilibrium region of the phase diagram

for protein solutions.

4.1.2. Critical criterion. If we make the substitutions a � RTK2 =

RT(B�11 � B2) and b = B�11 in the expression for the van der Waals

critical temperature (22), then the criterion T < Tc for the fluid–fluid

region of the phase diagram becomes

B2 < 1�
27

8

� �
B�11; ð23Þ

which dictates how strong the effects of attractive interactions must

be to drive B2 to a value sufficiently low for the effects of repulsive

interactions to be overcome and phase separation to occur. However,

we must take account of the fact that the van der Waals equation,

although qualitatively correct in its prediction of a phase transition, is

quantitatively incorrect. The considerations of Vliegenthart &

Lekkerkerker (2000), who have investigated the critical point for a

range of different intermolecular potentials, would appear to be of

assistance. If we define the magnitudes of B2 and B�11 relative to the

effective molar volume occupied by the protein in solution v0 = �L�3/

6 and make use of the the hard-sphere measure B�11 = 4v0 and the

general criterion for phase separation B2 < �6v0, we obtain the

modified result

B2 < 1�
5

2

� �
B�11: ð24Þ

This criterion is based on a more robust description of the phase

behaviour of protein solutions than van der Waals theory and has

been found to be quantitatively consistent with the definition of the

‘crystallization slot’ (George & Wilson, 1994; George et al., 1997;

Vliegenthart & Lekkerkerker, 2000). When interpreted in terms of

the ‘stickiness’ parameter � defined for the Baxter potential (Baxter,

1968), the relationship

B2 ¼ 1�
1

4�

� �
B�11 ð25Þ

enables expression of the criterion as �c < 1/10 (Dijkstra, 2002;

Rosenbaum et al., 1996) or, in our terms, K2 > 5�L�3/3.

4.2. Use of inert precipitants

Finding the circumstances under which a fluid–fluid phase transi-

tion takes place in protein solutions obviously involves a compromise

between attractive and repulsive forces of interaction between

molecules. Phase separation is sometimes assisted by addition of an

inert polymer or even a small co-solute such as a sugar. It is largely

unnecessary to invoke ideas such as ‘preferential solvation’,

‘depletion force’ or ‘osmotic stress’ in order to understand such

effects. If we imagine a hypothetical osmotic pressure experiment in

which the membrane is permeable to the added substance P, then the

virial expansion for the osmotic pressure becomes

�

RTCA

¼ ð1þ B1PCPÞ þ fB
�
11 � K2½1þ ð2B1P � B2PÞCP�gCA

þ . . . : ð26Þ

This can be recast in the van der Waals form

�þ
’2RT�K2

v2
eff

� �
ðveff � ’

2B�11Þ ’ RT; ð27Þ

where ’ = 1/(1 + B1PCP) approximates veff/v = 1� B1PCP, the volume

fraction effectively available to A taking into account exclusion due

to P, and

� ¼ Keff=K2 ¼ ½1þ ð2B1P � B2PÞCP� ð28Þ

defines the effective dimerization constant Keff = C2/C2
1 in the

presence of P. The increase in the effective oligomerization constant

through an excluded volume difference term has been understood for

many years (Nichol et al., 1981; Shearwin & Winzor, 1988; Patel et al.,

2002).

We see that addition of an inert substance to a solution of

macromolecules may be expected to decrease the van der Waals

critical volume by a factor ’ and increase the critical temperature by a

factor �. This latter effect may be highly significant in relation to

protein crystallization, driving the critical point for the fluid–fluid

phase transition to a temperature sufficiently high to guarantee that

normal laboratory conditions fall within the fluid–fluid equilibrium

region of the phase diagram.

4.2.1. Critical criterion. Substitution of the expressions

a = ’2RT�Keff and b = ’2B�11 from (27) into (22) allows the van der

Waals phase transition criterion to be written as

B2 < 1�
27

8�

� �
B�11; ð29Þ
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where � is the ratio Keff/K2 defined in (28). If we further accept that

the work of Vliegenthart & Lekkerkerker (2000) justifies a quanti-

tative correction to the van der Waals result, we may prefer to use

B2 < 1�
5

2�

� �
B�11: ð30Þ

to calculate the expected effect of an inert substance P on the fluid–

fluid critical point for a protein solution. A very recent study (Snoussi

& Halle, 2005) has reported a value of � = 5.5� 105 for a protein self-

association (decamer formation) reaction in the presence of 14%

(volume fraction) dextran.

4.2.2. Calculation of excluded volumes. The quantity � can be

calculated for molecules with certain general shapes. If molecules of

both the protein A and the inert molecule P added to the protein

solution are compact enough to be modelled as effective spheres, the

protein dimer can be represented as a dumbbell. Then, following the

calculation of Wills & Winzor (2001) the excluded volume quantities

needed to define the quantity � are given by the formulae

B1P ¼
�L

6
ð�1 þ �PÞ

3;

B2P ¼
�L

12
ð4�3

1 þ 12�2
1�P þ 9�1�

2
P þ 2�3

PÞ ð31Þ

and

2B1P � B2P ¼
�L

6
�2

Pð3�1 þ 2�PÞ; ð32Þ

where �1 and �P are the effective diameters of the protein monomer

and a molecule of the added inert solute P, respectively. (31) and (32)

can even be used in the case that P is a chain polymer (Nichol et al.,

1981), especially when a suitable measure of the effective diameter as

a function of polymer molecular weight is available (Tanaka & Ataka,

2002).

Alternatively, the excluded volume for spherical proteins inter-

acting with random-chain polymers can been expressed in the form

BAP ¼
2��3

AL

3

1

4
þ

3

2�

� �1=2
lP

�A

þ
1

2

lP

�A

� �2
" #

; ð33Þ

where �A is the diameter of the protein and lP is the root-mean-

square end-to-end length of the polymer chain. This equation has

been found to give a good representation of BAP for protein–polymer

interactions (Wills et al., 1995; Chatterjee & Schweizer, 1998a),

although there is minor uncertainty concerning the coefficients of the

various terms in (33) (Chatterjee & Schweizer, 1998b). By applying

the equivalent sphere approximation �2 = 21/3�1 to the dimer, one can

use (33) to calculate the difference 2B1P � B2P needed to obtain �.

The results of Tuinier et al. (2000) are likely to be useful for a more

robust calculation of B2P, the excluded volume for a random polymer

interacting with a dumbbell comprised of spherical monomers.

5. Concluding remarks

We have applied the van der Waals equation of state for imperfect

gases to solutions of macromolecules. The equation provides an

understanding of the opposing roles of attractive and repulsive

intermolecular forces in determining the deviation of the osmotic

pressure from the ideal relation � = RTCA. When cast in terms of the

second virial coefficient B2, the van der Waals a parameter has a

direct relation to the equilibrium constant for dimerization K2 (11)

and the b parameter corresponds to the total excluded volume per

pair of molecules B�11 comprised of terms resulting from hard-sphere

and net charge–charge interactions (19). The phenomenological

second virial coefficient can be determined experimentally by using a

wide variety of techniques. Sedimentation equilibrium conveniently

produces the most accurate results, but microchip self-interaction

chromatography can provide useful estimates more rapidly. The total

excluded volume can be calculated from independent knowledge of

molecular parameters, allowing K2 to be determined as an empirical

measure of the net effect of intermolecular attraction (17).

The van der Waals equation of state successfully predicts the

existence of the critical point that characterizes the fluid–fluid phase

transition in protein solutions, a phenomenon of much interest in

relation to protein crystallization. More general results (Vliegenthart

& Lekkerkerker, 2000) can be used to make a minor quantitative

correction to van der Waals’ prediction concerning the criterion for

the phase transition. The same correction can be applied to predict

the quantitative effect of inert cosolutes on the fluid–fluid phase

transition in protein solutions. (30) may prove useful in designing

modifications to experimental conditions under which proteins may

be induced to crystallize by allowing the effect of inert polymers to be

assessed quantitatively.
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