239 research outputs found

    Digital pulse-shape discrimination of fast neutrons and gamma rays

    Full text link
    Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADC's were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.Comment: 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in Physics Research

    Antenatal biological models in the characterisation and research of congenital lower urinary tract disorders

    Get PDF
    Congenital lower urinary tract disorders are a family of diseases affecting both urinary storage and voiding as well as upstream kidney function. Current treatments include surgical reconstruction but many children still fail to achieve urethral continence or progress to chronic kidney disease. New therapies can only be achieved through undertaking research studies to enhance our understanding of congenital lower urinary tract disorders. Animal models form a critical component of this research, a corner of the triangle composed of human in-vitro studies and clinical research. We describe the current animal models for two rare congenital bladder disorders, posterior urethral valves (PUV) and bladder exstrophy (BE). We highlight important areas for researchers to consider when deciding which animal model to use to address particular research questions and outline the strengths and weaknesses of current models available for PUV and BE. Finally, we present ideas for refining animal models for PUV and BE in the future to stimulate future researchers and help them formulate their thinking when working in this field

    Boron-Doped Diamond Dual-Plate Deep-Microtrench Device for Generator-Collector Sulfide Sensing

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.A BDD-BDD dual-plate microtrench electrode with 6μm inter-electrode spacing is investigated using generator-collector electrochemistry and shown to give microtrench depth-dependent sulfide detection down to the μM levels. The effect of the microtrench depth is compared for a "shallow" 44 μm and a "deep" 180μm microtrench and linked to the reduction of oxygen to hydrogen peroxide which interferes with sulfide redox cycling. With a deeper microtrench and a fixed collector potential at -1.4V vs. SCE, two distinct redox cycling potential domains are observed at 0.0V vs. SCE (2-electron) and at 1.1V vs. SCE (6-electron).F. M. and A. J. G. thank EPSRC for financial support (EP/I028706/1)

    A Pilot Study of Dietary Nitrate Supplementation in Anaemic Patients.

    Get PDF
    Conference poster presented at Clinical Trials Symposium, RD&E 5/11/15.Anaemia affects 60-90% of people with cancer. A lower haemoglobin (Hb) is associated with a worse quality of life. Erythropoietin treatment improves both Hb and quality of life but is associated with significant risk. Blood transfusions improve Hb but only have a short-term effect on quality of life. Stored blood has a reduced NO bioavailability causing reduced vasodilation, reduced blood flow and oxygen delivery to muscles, and reduced exercise tolerance and muscle oxidative function. Dietary nitrate supplementation has been shown to be of significant benefit in healthy individuals. It improves mitochondrial efficiency, reduces metabolic rate, increases blood flow to areas of the body requiring more oxygen, and reduces the effect of hypoxia on exercise capacity and muscle recovery.Research funded by Exeter Leukaemia Fund, Royal Devon & Exeter NHS Foundation Trust and the University of Exeter

    Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia.

    Get PDF
    In vivo, mammalian cells reside in an environment of 0.5-10% O2 (depending on the tissue location within the body), whilst standard in vitro cell culture is carried out under room air. Little is known about the effects of this hyperoxic environment on treatment-induced oxidative stress, relative to a physiological oxygen environment. In the present study we investigated the effects of long-term culture under hyperoxia (air) on photodynamic treatment. Upon photodynamic irradiation, cells which had been cultured long-term under hyperoxia generated higher concentrations of mitochondrial reactive oxygen species, compared with cells in a physioxic (2% O2) environment. However, there was no significant difference in viability between hyperoxic and physioxic cells. The expression of genes encoding key redox homeostasis proteins and the activity of key antioxidant enzymes was significantly higher after the long-term culture of hyperoxic cells compared with physioxic cells. The induction of antioxidant genes and increased antioxidant enzyme activity appear to contribute to the development of a phenotype that is resistant to oxidative stress-induced cellular damage and death when using standard cell culture conditions. The results from experiments using selective inhibitors suggested that the thioredoxin antioxidant system contributes to this phenotype. To avoid artefactual results, in vitro cellular responses should be studied in mammalian cells that have been cultured under physioxia. This investigation provides new insights into the effects of physioxic cell culture on a model of a clinically relevant photodynamic treatment and the associated cellular pathways

    Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy

    Get PDF
    This is the author accepted manuscript. The final version is available from Future Medicine via the DOI in this recordAim: Achieving reliably high production of reactive oxygen species (ROS) in photodynamic therapy (PDT) remains challenging. Graphene quantum dots (GQD) hold great promise for PDT. However, the photochemical processes leading to GQD-derived ROS generation have not yet been fully elucidated. Materials & methods: Physicochemical characteristics of GQDs were comprehensively investigated, including electron paramagnetic resonance analysis of singlet oxygen production. Dark toxicity was assessed in vitro and in vivo. Results: GQDs demonstrated excellent photo-luminescent features, corrosion resistance, high water solubility, high photo/pH-stability, in vitro and in vivo biocompatibility and very efficient singlet oxygen/ROS generation. Conclusion: The enhanced ROS generation, combined with good biocompatibility and minimal toxicity in vitro and in vivo support the potential of GQDs for future PDT application.This work was supported by the EPSRC Centre for Doctoral Training in Metamaterials, XM2 (grant number EP/L015331/1
    • …
    corecore